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Preface

This book is motivated by the following technological developments� high quality
integrated sensors and actuators� powerful control processors that can implement
complex control algorithms� and powerful computer hardware and software that can
be used to design and analyze control systems� We believe that these technological
developments have the following rami�cations for linear controller design�

� When many high quality sensors and actuators are incorporated into the de�
sign of a system� sophisticated control algorithms can outperform the simple
control algorithms that have su
ced in the past�

� Current methods of computer�aided control system design underutilize avail�
able computing power and need to be rethought�

This book is one small step in the directions suggested by these rami�cations�

We have several goals in writing this text�

� To give a clear description of how we might formulate the linear controller
design problem� without regard for how we may actually solve it� modeling
fundamental speci�cations as opposed to speci�cations that are artifacts of a
particular method used to solve the design problem�

� To show that a wide �but incomplete� class of linear controller design problems
can be cast as convex optimization problems�

� To argue that solving the controller design problems in this restricted class is
in some sense fundamentally tractable� although it involves more computing
than the standard methods that have �analytical� solutions� it involves much
less computing than a global parameter search� This provides a partial answer
to the question of how to use available computing power to design controllers�

IX
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� To emphasize an aspect of linear controller design that has not been empha�
sized in the past� the determination of limits of performance� i�e�� speci�ca�
tions that cannot be achieved with a given system and control con�guration�

It is not our goal to survey recently developed techniques of linear controller design�
or to �directly� teach the reader how to design linear controllers� several existing
texts do a good job of that� On the other hand� a clear formulation of the linear
controller design problem� and an understanding that many of the performance
limits of a linear control system can be computed� are useful to the practicing
control engineer�

Our intended audience includes the sophisticated industrial control engineer� and
researchers and research students in control engineering�

We assume the reader has a basic knowledge of linear systems �Kailath �Kai����
Chen �Che���� Zadeh and Desoer �ZD����� Although it is not a prerequisite� the
reader will bene�t from a prior exposure to linear control systems� from both the
�classical� and �modern� or state�space points of view� By classical control we refer
to topics such as root locus� Bode plots� PI and lead�lag controllers �Ogata �Oga����
Franklin� Powell� Emami �FPE����� By state�space control we mean the the�
ory and use of the linear quadratic regulator �LQR�� Kalman �lter� and linear
quadratic Gaussian �LQG� controller �Anderson and Moore �AM���� Kwakernaak
and Sivan �KS���� Bryson and Ho �BH�����

We have tried to maintain an informal� rather than completely rigorous� approach
to the mathematics in this book� For example� in chapter �� we consider linear
functionals on in�nite�dimensional spaces� but we do not use the term dual space�
and we avoid any discussion of their continuity properties� We have given proofs and
derivations only when they are simple and instructive� The references we cite con�
tain precise statements� careful derivations� more general formulations� and proofs�

We have adopted this approach because we believe that many of the basic ideas
are accessible to those without a strong mathematics background� and those with the
background can supply the necessary quali�cations� guess various generalizations�
or recognize terms that we have not used�

A Notes and References section appears at the end of each chapter� We have
not attempted to give a complete bibliography� rather� we have cited a few key
references for each topic� We apologize to the many researchers and authors whose
relevant work �especially� work in languages other than English� we have not cited�
The reader who wishes to compile a more complete set of references can start by
computing the transitive closure of ours� i�e�� our references along with the references
in our references� and so on�
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Chapter 1

Control Engineering and
Controller Design

Controller design� the topic of this book� is only a part of the broader task of
control engineering� In this chapter we �rst give a brief overview of control
engineering� with the goal of describing the context of controller design� We then
give a general discussion of the goals of controller design� and �nally an outline
of this book�

1.1 Overview of Control Engineering

The goal of control engineering is to improve� or in some cases enable� the perfor�
mance of a system by the addition of sensors� control processors� and actuators� The
sensors measure or sense various signals in the system and operator commands� the
control processors process the sensed signals and drive the actuators� which a�ect
the behavior of the system� A schematic diagram of a general control system is
shown in �gure ����

This general diagram can represent a wide variety of control systems� The sys�
tem to be controlled might be an aircraft� a large electric power generation and
distribution system� an industrial process� a head positioner for a computer disk
drive� a data network� or an economic system� The signals might be transmitted
via analog or digitally encoded electrical signals� mechanical linkages� or pneumatic
or hydraulic lines� Similarly the control processor or processors could be mechanical�
pneumatic� hydraulic� analog electrical� general�purpose or custom digital comput�
ers�

Because the sensor signals can a�ect the system to be controlled �via the con�
trol processor and the actuators�� the control system shown in �gure ��� is called

1



2 CHAPTER 1 CONTROL ENGINEERING AND CONTROLLER DESIGN
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���

Figure ��� A schematic diagram of a general control system�

a feedback or closed�loop control system� which refers to the signal �loop� that cir�
culates clockwise in this �gure� In contrast� a control system that has no sensors�
and therefore generates the actuator signals from the command signals alone� is
sometimes called an open�loop control system� Similarly� a control system that has
no actuators� and produces only operator display signals by processing the sensor
signals� is sometimes called a monitoring system�

In industrial settings� it is often the case that the sensor� actuator� and processor
signals are boolean� i�e� assume only two values� Boolean sensors include mechan�
ical and thermal limit switches� proximity switches� thermostats� and pushbutton
switches for operator commands� Actuators that are often con�gured as boolean
devices include heaters� motors� pumps� valves� solenoids� alarms� and indicator
lamps� Boolean control processors� referred to as logic controllers� include indus�
trial relay systems� general�purpose microprocessors� and commercial programmable
logic controllers�

In this book� we consider control systems in which the sensor� actuator� and
processor signals assume real values� or at least digital representations of real values�
Many control systems include both types of signals� the real�valued signals that we
will consider� and boolean signals� such as fault or limit alarms and manual override
switches� that we will not consider�



1.1 OVERVIEW OF CONTROL ENGINEERING 3

In control systems that use digital computers as control processors� the signals
are sampled at regular intervals� which may di�er for di�erent signals� In some cases
these intervals are short enough that the sampled signals are good approximations
of the continuous signals� but in many cases the e�ects of this sampling must be
considered in the design of the control system� In this book� we consider control
systems in which all signals are continuous functions of time�
In the next few subsections we brie�y describe some of the important tasks that

make up control engineering�

1.1.1 System Design and Control Configuration

Control con�guration is the selection and placement of the actuators and sensors on
the system to be controlled� and is an aspect of system design that is very important
to the control engineer� Ideally� a control engineer should be involved in the design of
the system itself� even before the control con�guration� Usually� however� this is not
the case� the control engineer is provided with an already designed system and starts
with the control con�guration� Many aircraft� for example� are designed to operate
without a control system� the control system is intended to improve the performance
�indeed� such control systems are sometimes called stability augmentation systems�
emphasizing the secondary role of the control system��

Actuator Selection and Placement

The control engineer must decide the type and placement of the actuators� In
an industrial process system� for example� the engineer must decide where to put
actuators such as pumps� heaters� and valves� The speci�c actuator hardware �or
at least� its relevant characteristics� must also be chosen� Relevant characteristics
include cost� power limit or authority� speed of response� and accuracy of response�
One such choice might be between a crude� powerful pump that is slow to respond�
and a more accurate but less powerful pump that is faster to respond�

Sensor Selection and Placement

The control engineer must also decide which signals in the system will be measured
or sensed� and with what sensor hardware� In an industrial process� for example�
the control engineer might decide which temperatures� �ow rates� pressures� and
concentrations to sense� For a mechanical system� it may be possible to choose
where a sensor should be placed� e�g�� where an accelerometer is to be positioned on
an aircraft� or where a strain gauge is placed along a beam� The control engineer
may decide the particular type or relevant characteristics of the sensors to be used�
including the type of transducer� and the signal conditioning and data acquisition
hardware� For example� to measure the angle of a shaft� sensor choices include
a potentiometer� a rotary variable di�erential transformer� or an ��bit or ���bit
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absolute or di�erential shaft encoder� In many cases� sensors are smaller than
actuators� so a change of sensor hardware is a less dramatic revision of the system
design than a change of actuator hardware�

There is not yet a well�developed theory of actuator and sensor selection and
placement� possibly because it is di
cult to precisely formulate the problems� and
possibly because the problems are so dependent on available technology� Engineers
use experience� simulation� and trial and error to guide actuator and sensor selection
and placement�

1.1.2 Modeling

The engineer develops mathematical models of

� the system to be controlled�

� noises or disturbances that may act on the system�

� the commands the operator may issue�

� desirable or required qualities of the �nal system�

These models might be deterministic �e�g�� ordinary di�erential equations �ODE�s��
partial di�erential equations �PDE�s�� or transfer functions�� or stochastic or prob�
abilistic �e�g�� power spectral densities��

Models are developed in several ways� Physical modeling consists of applying
various laws of physics �e�g�� Newton�s equations� energy conservation� or �ow bal�
ance� to derive ODE or PDE models� Empirical modeling or identi�cation consists
of developing models from observed or collected data� The a priori assumptions used
in empirical modeling can vary from weak to strong� in a �black box� approach�
only a few basic assumptions are made� for example� linearity and time�invariance
of the system� whereas in a physical model identi�cation approach� a physical model
structure is assumed� and the observed or collected data is used to determine good
values for these parameters� Mathematical models of a system are often built up
from models of subsystems� which may have been developed using di�erent types
of modeling�

Often� several models are developed� varying in complexity and �delity� A simple
model might capture some of the basic features and characteristics of the system�
noises� or commands� a simple model can simplify the design� simulation� or anal�
ysis of the control system� at the risk of inaccuracy� A complex model could be
very detailed and describe the system accurately� but a complex model can greatly
complicate the design� simulation� or analysis of the system�
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1.1.3 Controller Design

Controller design is the topic of this book� The controller or control law describes
the algorithm or signal processing used by the control processor to generate the
actuator signals from the sensor and command signals it receives�

Controllers vary widely in complexity and e�ectiveness� Simple controllers in�
clude the proportional �P�� the proportional plus derivative �PD�� the proportional
plus integral �PI�� and the proportional plus integral plus derivative �PID� con�
trollers� which are widely and e�ectively used in many industries� More sophisti�
cated controllers include the linear quadratic regulator �LQR�� the estimated�state�
feedback controller� and the linear quadratic Gaussian �LQG� controller� These
sophisticated controllers were �rst used in state�of�the�art aerospace systems� but
are only recently being introduced in signi�cant numbers�

Controllers are designed by many methods� Simple P or PI controllers have only
a few parameters to specify� and these parameters might be adjusted empirically�
while the control system is operating� using �tuning rules�� A controller design
method developed in the �����s through the �����s� often called classical controller
design� is based on the �����s work on the design of vacuum tube feedback am�
pli�ers� With these heuristic �but very often successful� techniques� the designer
attempts to synthesize a compensation network or controller with which the closed�
loop system performs well �the terms �synthesize�� �compensation�� and �network�
were borrowed from ampli�er circuit design��

In the �����s through the present time� state�space or �modern� controller de�
sign methods have been developed� These methods are based on the fact that the
solutions to some optimal control problems can be expressed in the form of a feed�
back law or controller� and the development of e
cient computer methods to solve
these optimal control problems�

Over the same time period� researchers and control engineers have developed
methods of controller design that are based on extensive computing� for example�
numerical optimization� This book is about one such method�

1.1.4 Controller Implementation

The signal processing algorithm speci�ed by the controller is implemented on the
control processor� Commercially available control processors are generally restricted
to logic control and speci�c types of control laws such as PID� Custom control pro�
cessors built from general�purpose microprocessors or analog circuitry can imple�
ment a very wide variety of control laws� General�purpose digital signal processing
�DSP� chips are often used in control processors that implement complex control
laws� Special�purpose chips designed speci�cally for control processors are also now
available�
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1.1.5 Control System Testing, Validation, and Tuning

Control system testing may involve�

� extensive computer simulations with a complex� detailed mathematical model�

� real�time simulation of the system with the actual control processor operating
��hardware in the loop���

� real�time simulation of the control processor� connected to the actual system
to be controlled�

� �eld tests of the control system�

Often the controller is modi�ed after installation to optimize the actual perfor�
mance� a process known as tuning�

1.2 Goals of Controller Design

A well designed control system will have desirable performance� Moreover� a well
designed control system will be tolerant of imperfections in the model or changes
that occur in the system� This important quality of a control system is called
robustness�

1.2.1 Performance Specifications

Performance speci�cations describe how the closed�loop system should perform�
Examples of performance speci�cations are�

� Good regulation against disturbances� The disturbances or noises that act on
the system should have little e�ect on some critical variables in the system�
For example� an aircraft may be required to maintain a constant bearing
despite wind gusts� or the variations in the demand on a power generation and
distribution system must not cause excessive variation in the line frequency�
The ability of a control system to attenuate the e�ects of disturbances on
some system variables is called regulation�

� Desirable responses to commands� Some variables in the system should re�
spond in particular ways to command inputs� For example� a change in the
commanded bearing in an aircraft control system should result in a change in
the aircraft bearing that is su
ciently fast and smooth� yet does not exces�
sively overshoot or oscillate�

� Critical signals are not too big� Critical signals always include the actuator
signals� and may include other signals in the system� In an industrial process
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control system� for example� an actuator signal that goes to a pump must
remain within the limits of the pump� and a critical pressure in the system
must remain below a safe limit�

Many of these speci�cations involve the notion that a signal �or its e�ect� is small�
this is the subject of chapters � and ��

1.2.2 Robustness Specifications

Robustness speci�cations limit the change in performance of the closed�loop system
that can be caused by changes in the system to be controlled or di�erences between
the system to be controlled and its model� Such perturbations of the system to be
controlled include�

� The characteristics of the system to be controlled may change� perhaps due
to component drift� aging� or temperature coe
cients� For example� the e
�
ciency of a pump used in an industrial process control system may decrease�
over its life time� to 	�� of its original value�

� The system to be controlled may have been inaccurately modeled or identi�ed�
possibly intentionally� For example� certain structural modes or nonlinearities
may be ignored in an aircraft dynamics model�

� Gross failures� such as a sensor or actuator failure� may occur�

Robustness speci�cations can take several forms� for example�

� Low di�erential sensitivities� The derivative of some closed�loop quantity�
with respect to some system parameter� is small� For example� the response
time of an aircraft bearing to a change in commanded bearing should not be
very sensitive to aerodynamic pressure�

� Guaranteed margins� The control system must have the ability to meet some
performance speci�cation despite some speci�c set of perturbations� For ex�
ample� we may require that the industrial process control system mentioned
above continue to have good regulation of product �ow rate despite any de�
crease in pump e�ectiveness down to 	���

1.2.3 Control Law Specifications

In addition to the goals and speci�cations described above� there may be constraints
on the control law itself� These control law speci�cations are often related to the
implementation of the controller� Examples include�

� The controller has a speci�c form� e�g�� PID�
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� The controller is linear and time�invariant �LTI��

� In a control system with many sensors and actuators� we may require that
each actuator signal depend on only one sensor signal� Such a controller is
called decentralized� and can be implemented using many noncommunicating
control processors�

� The controller must be implemented using a particular control processor� This
speci�cation limits the complexity of the controller�

1.2.4 The Controller Design Problem

Once the system to be controlled has been designed and modeled� and the designer
has identi�ed a set of design goals �consisting of performance goals� robustness re�
quirements� and control law constraints�� we can pose the controller design problem�

The controller design problem� Given a model of the system to be
controlled �including its sensors and actuators� and a set of design goals�
�nd a suitable controller� or determine that none exists�

Controller design� like all engineering design� involves tradeo�s� by suitable� we
mean a satisfactory compromise among the design goals� Some of the tradeo�s in
controller design are intuitively obvious� e�g�� in mechanical systems� it takes larger
actuator signals �forces� torques� to have faster responses to command signals� Many
other tradeo�s are not so obvious�
In our description of the controller design problem� we have emphasized the

determination of whether or not there is any controller that provides a suitable
tradeo� among the goals� This aspect of the controller design problem can be as
important in control engineering as �nding or synthesizing an appropriate controller
when one exists� If it can be determined that no controller can achieve a suitable
tradeo�� the designer must�

� relax the design goals� or

� redesign the system to be controlled� for example by adding or relocating
sensors or actuators�

In practice� existing controller design methods are often successful at �nding a
suitable controller� when one exists� These methods depend upon talent� experience�
and a bit of luck on the part of the control engineer� If the control engineer is suc�
cessful and �nds a suitable controller� then of course the controller design problem
has been solved� However� if the control engineer fails to design a suitable con�
troller� then he or she cannot be sure that there is no suitable controller� although
the control engineer might suspect this� Another design approach or method �or
indeed� control engineer� could �nd a suitable controller�
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1.3 Control Engineering and Technology

1.3.1 Some Advances in Technology

Control engineering is driven by available technology� and the pace of the relevant
technology advances is now rapid� In this section we mention a few of the advances
in technology that currently have� or will have� an impact on control engineering�
More speci�c details can be found in the Notes and References at the end of this
chapter�

Integrated and Intelligent Sensors

Over the past decade the technology of integrated sensors has been developed� Inte�
grated sensors are built using the techniques of microfabrication originally developed
for integrated circuits� they often include the signal conditioning and interface cir�
cuitry on the same chip� in which case they are called intelligent sensors� This
signal conditioning might include� for example� temperature compensation� In�
tegrated sensors promise greater reliability and linearity than many conventional
sensors� and because they are typically cheaper and smaller than conventional sen�
sors� it will be possible to incorporate many more sensors in the design of control
systems than is currently done�

Another example of a new sensor technology is the Global Positioning System
�GPS�� GPS position and velocity sensors will soon be available for use in control
systems�

Actuator Technology

Signi�cant improvements in actuator technology have been made� For example�
direct�drive brushless DC motors are more linear and have higher bandwidths than
the motors with brushes and gears �and stiction and backlash� that they will replace�
As another example� the trend in aircraft design is towards many actuators� such
as canards and vectored thrust propulsion systems�

Digital Control Processors

Over the last few decades� the increase in control processor power and simultane�
ous decrease in cost has been phenomenal� especially for digital processors such as
general�purpose microprocessors� digital signal processors� and special�purpose con�
trol processors� As a result� the complexity of control laws that can be implemented
has increased dramatically� In the future� custom or semicustom chips designed
speci�cally for control processor applications will o�er even more processing power�
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Computer-Aided Control System Design and Analysis

Over the past decade we have seen the rise of computer�aided control system de�
sign �CACSD�� Great advances in available computing power �e�g�� the engineering
workstation�� together with powerful software� have automated or eased many of
the tasks of control engineering�

� Modeling� Sophisticated programs can generate �nite element models or de�
termine the kinematics and dynamics of a mechanical system from its physical
description� Software that implements complex identi�cation algorithms can
process large amounts of experimental data to form models� Interactive and
graphics driven software can be used to manipulate models and build models
of large systems from models of subsystems�

� Simulation� Complex models can be rapidly simulated�

� Controller design� Enormous computing power is now available for the design
of controllers� This last observation is of fundamental importance for this
book�

1.3.2 Challenges for Controller Design

The technology advances described above present a number of challenges for con�
troller design�

� More sensors and actuators� For only a modest cost� it is possible to incor�
porate many more sensors� and possibly more actuators� into the design of a
system� Clearly the extra information coming from the sensors and the extra
degrees of freedom in manipulating the system make better control system
performance possible� The challenge for controller design is to take advantage
of this extra information and degrees of freedom�

� Higher quality systems� As higher quality sensors and actuators are incorpo�
rated into the system� the system behavior becomes more repeatable and can
be more accurately modeled� The challenge for controller design is to take
advantage of this more detailed knowledge of the system�

� More powerful control processors� Very complex control laws can be imple�
mented using digital control processors� Clearly a more complex control law
could improve control system performance �it could also degrade system per�
formance� if improperly designed�� The challenge for controller design is to
fully utilize the control processor power to achieve better control system per�
formance�

In particular� control law speci�cations should be examined carefully� Histor�
ically relevant measures of control law complexity� such as the order of an LTI
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controller� are now less relevant� For example� the order of the compensator
used in a vacuum tube feedback ampli�er is the number of inductors and ca�
pacitors needed to synthesize the compensation network� and was therefore
related to cost� size� and reliability� On a particular digital control processor�
however� the order of the controller is essentially unrelated to cost� size� and
reliability�

� Powerful computers to design controllers� The challenge for controller design
is to productively use the enormous computing power available� Many current
methods of computer�aided controller design simply automate procedures de�
veloped in the �����s through the �����s� for example� plotting root loci or
Bode plots� Even the �modern� state�space and frequency�domain methods
�which require the solution of algebraic Riccati equations� greatly underutilize
available computing power�

1.4 Purpose of this Book

The main purpose of this book is to describe how the controller design problem can
be solved for a restricted set of systems and a restricted set of design speci�cations�
by combining recent theoretical results with recently developed numerical convex
optimization techniques�
The restriction on the systems is that they must be linear and time�invariant

�LTI�� The restriction on the design speci�cations is that they be closed�loop convex�
a term we shall describe in detail in chapter �� This restricted set of design speci��
cations includes a wide class of performance speci�cations� a less complete class of
robustness speci�cations� and essentially none of the control law speci�cations�
The basic approach involves directly designing a good closed�loop response� as

opposed to designing an open�loop controller that yields a good closed�loop response�
We will show that a wide variety of important practical constraints on system
performance can be formulated as convex constraints on the response of the closed�
loop system� These are the speci�cations that we call closed�loop convex�
Given a system that is LTI� and a set of closed�loop convex design speci�ca�

tions� the controller design problem can be cast as a convex optimization problem�
and consequently� can be e�ectively solved� This means that if the speci�cations are
achievable� we can �nd a controller that meets the speci�cations� if the speci�cations
are not achievable� this fact can be determined� i�e�� we will know that the spec�
i�cations are not achievable� In contrast� the designer using a classical controller
design scheme is only likely to �nd a controller that meets a set of speci�cations
that is achievable� and� of course� certain not to �nd a controller that meets a set of
speci�cations that is not achievable� Many controller design techniques do not have
any way to determine unambiguously that a set of speci�cations is not achievable�
For controller design problems of the restricted form� we shall show how to
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determine which speci�cations can be achieved and which cannot� and therefore
how the limits of performance can be determined for a given system and control
con�guration�
No matter which controller design method is used by the engineer� knowledge

of the achievable performance is extremely valuable practical information� since it
provides an absolute yardstick against which any designed controller can be com�
pared� To know that a certain candidate controller that is easily implemented� or
has some other advantage� achieves regulation only ��� worse than the best reg�
ulation achievable by any LTI controller� is a strong point in favor of the design�
In this sense� this book is not about a particular controller design method or syn�
thesis procedure� rather it is about a method of determining what speci�cations �of
a large but restricted class� can be met using any controller design method� for a
given system and control con�guration�
We have in addition several subsidiary goals� some of which we have already

mentioned� The �rst is to develop a framework in which we can precisely formulate
the controller design problem which we vaguely described above� Our experience
suggests that carefully formulating a real controller design problem in the frame�
work we develop will help identify the critical issues and design tradeo�s� This
clari�cation is useful in practical controller design�
We also hope to initiate a discussion of how we can apply the enormous com�

puting power that will soon be available to the controller design problem� beyond�
for example� solving the algebraic Riccati equations of �modern� controller design
methods� In this book we start this discussion with a speci�c suggestion� solving
convex nondi�erentiable optimization problems�

1.4.1 An Example

We can demonstrate some of the main points of this book with an example� We will
consider a speci�c system that has one actuator and one output that is supposed
to track a command input� and is a�ected by some noises� the system is described
in section ��� �and many other places throughout the book�� but the details are not
relevant for this example�
Goals for the design of a controller for this system might be�

� Good RMS regulation� i�e�� the root�mean�square �RMS� value of the output�
due to the noises� should be small�

� Low RMS actuator e�ort� i�e�� the RMS value of the actuator signal should
be small�

It is intuitively clear that by using a larger actuator signal� we may improve the
regulation� since we can expend more e�ort counteracting the e�ect of the noises�
We will see in chapter �� that the exact nature of this tradeo� between RMS
regulation and RMS actuator e�ort can be determined� it is shown in �gure ����
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The shaded region shows every pair of RMS regulation and RMS actuator e�ort
speci�cations that can be achieved by a controller� the designer must� of course�
pick one of these�
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Figure ��� The shaded region shows speci�cations on RMS actuator e�ort
and RMS regulation that are achievable� The unshaded region� at the lower
left� shows speci�cations that no controller can achieve� this region shows a
fundamental limit of performance for this system�

The unshaded region at the lower left is very important� it consists of RMS
regulation and RMS actuator e�ort speci�cations that cannot be achieved by any
controller� no matter which design method is used� This unshaded region therefore
describes a fundamental limit of performance for this system� It tells us� for exam�
ple� that if we require an RMS regulation of ����� then we cannot simultaneously
achieve an RMS actuator e�ort of �����

Each shaded point in �gure ��� represents a possible design� we can view many
controller design methods as �rummaging around in the shaded region�� If the
designer knows that a point is shaded� then the designer can �nd a controller that
achieves the corresponding speci�cations� if the designer is clever enough� On the
other hand� each unshaded point represents a limit of performance for our system�
Knowing that a point is unshaded is perhaps disappointing� but still very useful
information for the designer�

The reader may know that this tradeo� of RMS regulation against RMS actuator
e�ort can be determined using LQG theory� The main point of this book is that
for a much wider class of speci�cations� a similar tradeo� curve can be computed�
Suppose� for example� that we add the following speci�cation to our goals above�
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� Command to output overshoot limit� i�e�� the step response overshoot of the
closed�loop system� from the command to the output� does not exceed ����

Of course� intuition tells us that by adding this speci�cation� we make the design
problem �harder�� certain RMS regulation and RMS actuator e�ort speci�cations
that could be achieved without this new speci�cation will no longer be achievable
once we impose it�
In this case there is no analytical theory� such as LQG� that shows us the exact

tradeo�� The methods of this book� however� can be used to determine the exact
tradeo� of RMS regulation versus RMS actuator e�ort with the overshoot limit
imposed� This tradeo� is shown in �gure ���� The dashed line� below the shaded
region of achievable speci�cations� is the tradeo� boundary when the overshoot limit
is not imposed� The �lost ground� represents the cost of imposing the overshoot
limit� We can compute this new region because limits on RMS actuator e�ort� RMS
regulation� and step response overshoot are all closed�loop convex speci�cations�
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Figure ��� The shaded region shows speci�cations on RMS actuator e�ort
and RMS regulation that are achievable when an additional limit of ��	
step response overshoot is imposed
 it can be computed using the methods
described in this book� The dashed line shows the tradeo� boundary without
the overshoot limit
 the gap between this line and the shaded region shows
the cost of imposing the overshoot limit�

In contrast� suppose that instead of the overshoot limit� we impose the following
control law constraint�

� The controller is proportional plus derivative �PD	� i�e�� the control law has a
speci�c form�
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This constraint might be needed to implement the controller using a speci�c com�
mercially available control processor� This speci�cation is not closed�loop convex� so
the methods described in this book cannot be used to determine the exact tradeo�
between RMS actuator e�ort and RMS regulation� This tradeo� can be computed�
however� using a brute force approach described in the Notes and References� and
is shown in �gure ���� The dashed line is the tradeo� boundary when the PD con�
troller constraint is not imposed� Speci�cations on RMS actuator e�ort and RMS
regulation that lie in the region between the dashed line and the shaded region can
be achieved by some controller� but no PD controller�
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Figure ��� The shaded region shows speci�cations on RMS actuator e�ort
and RMS regulation that can be achieved using a PD controller
 it cannot be
computed using the methods described in this book� The dashed line shows
the tradeo� boundary when no constraint on the control law is imposed�

An important point of this book is that we can compute tradeo�s among closed�
loop convex speci�cations� such as shown in �gure ���� although it requires more
computation than determining the tradeo� for a problem that has an analytical
solution� such as shown in �gure ���� in return� however� a much larger class of
problems can be considered� While the computation needed to determine a tradeo�
such as shown in �gure ��� is more than that required to compute the tradeo� shown
in �gure ���� it is much less than the computation required to compute tradeo�s
such as the one shown in �gure ����

The fact that a tradeo� like the one shown in �gure ��� is much harder to
compute than a tradeo� like the one shown in �gure ��� presents a paradox� To
produce �gure ��� we search over the set of all possible LTI controllers� which has
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in�nite dimension� To produce �gure ���� however� we search over the set of all PD
controllers� which has dimension two� We shall see that convexity makes �gure ���
�easier� to produce than �gure ���� even though we must search over a far �larger�
set of potential controllers�

1.5 Book Outline

In part I� A Framework for Controller Design� we develop a formal framework for
many of the concepts described above� the system to be controlled� the control con�
�guration� the controller� and the design goals and objectives for controller design�
In part II� Analytical Tools� we �rst describe norms of signals and systems� which

can be used to make precise such design goals as �error signals should be made small�
while the actuator signals should not be too large�� We then study some important
geometric properties that many controller design speci�cations have� and introduce
the important notion of a closed�loop convex design speci�cation�
In part III� Design Speci�cations� we catalog many closed�loop convex design

speci�cations� These design speci�cations include speci�cations on the response of
the closed�loop system to the various commands and disturbances that may act on
it� as well as robustness speci�cations that limit the sensitivity of the closed�loop
system to changes in the system to be controlled�
In part IV� Numerical Methods� we describe numerical methods for solving the

controller design problem� We start with some controller design problems that have
analytic solutions� i�e�� can be solved rapidly and exactly using standard methods�
We then turn to the numerical solution of controller design problems that can be
expressed in terms of closed�loop convex design speci�cations� but do not have
analytic solutions�
In the �nal chapter we give some discussion of the methods described in this

book� as well as some history of the main ideas�

1.5.1 Book Structure

The structure of this book is shown in detail in �gure ���� From this �gure the
reader can see that the structure of this book is more vertical than that of most
books on linear controller design� which often have parallel discussions of di�erent
design techniques� In contrast� this book tells essentially one story� with a few
chapters covering related subplots�
A minimal path through the book� which conveys only the essentials of the story�

consists of chapters �� �� �� ����� and ��� This path results from following every
dashed line labeled �experts can skip� in �gure ���� We note� however� that the
term �expert� depends on the context� for example� the reader may be an expert
on norms �and thus can safely skip or skim chapters � and ��� but not on convex
optimization �and thus should read chapters �� and ����
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Notes and References

A history of feedback control is given in Mayr �May��
 and the book �Ben��
 and arti�
cle �Ben��
 by Bennett�

Sensors and Actuators
Commercially available sensors and actuators for control systems are surveyed in the books
by Hordeski �Hor��
 and DeSilva �DeS��

 the reader can also consult commercial catalogs
and manuals such as �ECC��
 and �Tra��b
�

The technology behind integrated sensors and actuators is discussed in the survey article by
Petersen �Pet��
� Commercial implications of integrated sensor technology are discussed
in� e�g�� �All��
 �many of the predictions in this article have come to pass over the last
decade�� Research developments in integrated sensors and actuators can be found in
the conference proceedings �Tra��a
 �this conference occurs every other year�� and the
journal Sensors and Actuators� published by Elsevier Sequoia� The journal IEEE Trans�
on Electron Devices occasionally has special issues on integrated sensors and actuators
�e�g�� Dec� ����� Jan� ������

Overviews of GPS can be found in the book compiled by Wells �Wel��
 and the two
volume set of reprints published by the Institute of Navigation �GPS��
�

Modeling and Identification
Formulation of dynamics equations for physical modeling of mechanical systems is covered
in Kane and Levinson �KL��
� Crandall et� al� �CKK��
� and Cannon �Can��
� Texts
treating identi�cation include those by Box and Jenkins �BJ��
� Norton �Nor��
� and
Ljung �Lju��
� which has a complete bibliography�

Linear Controller Design
P and PI controllers have been in use for a long time
 for example� the advantage of a
PI controller over a P controller is discussed in Maxwell�s ���� article �Max��
� which is
one of the �rst articles on controller design and analysis� PID tuning rules that have been
widely used originally appeared in the ���� article by Ziegler and Nichols �ZN��
�

The book Theory of Servomechanisms �JNP��
� edited by James� Nichols� and Philips�
gives a survey of controller design right after World War II� The ���� book by Newton�
Gould� and Kaiser �NGK��
 is among the �rst to adopt an �analytical� approach to
controller design �see below�� Texts covering classical linear controller design include
Bode �Bod��
� Ogata �Oga��
� Horowitz �Hor��
� and Dorf �Dor��
� The root locus
method was �rst described in �Eva��
�

Recent books covering classical and state�space methods of linear controller design include
Franklin� Powell� and Emami �FPE��
 and Chen �Che��
� Linear quadratic methods
for LTI controller design are covered in Athans and Falb �AF��	 ch
�
� Kwakernaak and
Sivan �KS��
� Anderson and Moore �AM��
� and Bryson and Ho �BH��
�

Three recent books on LTI controller design deserve special mention� Lunze�s Robust Mul�
tivariable Feedback Design �Lun��
� Maciejowski�sMultivariable Feedback Design �Mac��
�
and Vidyasagar�s Control System Synthesis� A Factorization Approach �Vid��
� The �rst
two� �Lun��
 and �Mac��
� cover a broad range of current topics and linear controller
design techniques� although neither covers our central topic� convex closed�loop design�
Compared to this book� these two books address more directly the question of how to
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design linear controllers� Vidyasagar�s book �Vid��
 contains the �recent results� that we
referred to at the beginning of section ���� Our book can be thought of as an extension or
application of the ideas in �Vid��
�

Digital Control
Digital control systems are covered in the books by Ogata �Oga��
� Ackermann �Ack��
�
and �Astr�om and Wittenmark �AW��
� A recent comprehensive text covering all aspects
of digital control systems is by Franklin� Powell� and Workman �FPW��
�

Control Processors and Controller Implementation
Programmable logic controllers and other industrial control processors are covered in
Warnock �War��
� An example of a commercially available special�purpose chip for con�
trol systems is National Semiconductor�s lm��� precision motion controller �Pre��
� which
implements a PID control law�

The use of DSP chips as control processors is discussed in several articles and manufac�
turers� applications manuals� For example� the implementation of a simple controller on
a Texas Instruments tms����� is described in �SB��
� and the implementation of a PID
controller on a Motorola dsp����� is described in �SS��
� Chapter �� of �FPW��
 de�
scribes the implementation of a complex disk drive head positioning controller using the
Analog Devices adsp����� The article �Che��
 describes the implementation of simple
controllers on an Intel �����

The design of custom integrated circuits for control processors is discussed in �JTP��

and �TL��
�

General issues in controller implementation are discussed in the survey paper by Hansel�
mann �Han��
�

The book �AT��
 discusses real�time software used to program general�purpose computers
as control processors� Topics covered include implementing the control law� interface to
actuators and sensors� communication� data logging� and operator display�

Computers and Control Engineering
Examples of computer�based equipment for control systems engineering include Hewlett�
Packard�s hp����a Control Systems Analyzer �HeP��
� which automates frequency re�
sponse measurements and some simple identi�cation procedures� and Integrated Systems�
ac���� control processor �ac���
� which allows rapid implementation of a controller for
prototyping�

A review of various software packages for structural analysis is given in �Nik��
� in particu�
lar the chapter �Mac��
� A widely used �nite element code is nastran �Cif��
� Computer
software packages �based on Kane�s method� that symbolically form the system dynamics
include sd
exact� described in �RS��	 SR��
 and autolev� described in �SL��
� Exam�
ples of software for system identi�cation are the system�id toolbox �Lju��
 for use with
matlab and the system�id package �mat��
 for use with matrix�x �see below��

Examples of controller design software are matlab �MLB��
 �and �LL��
�� matrix�
x �SFL��	 WSG��
� delight�mimo �PSW��
� and console �FWK��
� Some of these
programs were originally based on the linear algebra software packages linpack �DMB��

and eispack �SBD��
� A new generation of reliable linear algebra routines is now being
developed in the lapack project �Dem��

 lapack will take advantage of some of the
advances in computer hardware� e�g�� vector processing�
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General discussion of CACSD can be found� for example� in the article �Ast��
� and the
special issue of the Proceedings of the IEEE �PIE��
� See also �JH��
 and �Den��
�

Determining Limits of Performance

The value of being able to determine that a set of speci�cations cannot be achieved� and
the failing of many controller design methods in this regard� has been noted before� In
the ���� book Analytical Design of Linear Feedback Controls� by Newton� Gould� and
Kaiser �NGK��	 x�
�
� we �nd�

Unfortunately� the trial and error design method is beset with certain fun�
damental di�culties� which must be clearly understood and appreciated in
order to employ it properly� From both a practical and theoretical viewpoint
its principal disadvantage is that it cannot recognize an inconsistent set of
speci�cations�

� � � The analytical design procedure has several advantages over the trial and
error method� the most important of which is the facility to detect immediately
and surely an inconsistent set of speci�cations� The designer obtains a �yes�
or �no� answer to the question of whether it is possible to ful�ll any given
set of speci�cations
 he is not left with the haunting thought that if he had
tried this or that form of compensation he might have been able to meet the
speci�cations�

� � � Even if the reader never employs the analytical procedure directly� the
insight that it gives him into linear system design materially assists him in
employing the trial and error design procedure�

This book is about an analytical design procedure� in the sense in which the phrase is used
in this quote�

There are a few results in classical controller design that can be used to determine
some speci�cations that cannot be achieved� The most famous is Bode�s integral theo�
rem �Bod��

 a more recent result is due to Zames �Zam��	 ZF��
� These results were
extended to unstable plants by Freudenberg and Looze �FL��	 FL��
� and plants with
multiple sensors and actuators by Boyd and Desoer �BD��
�

The article by Barratt and Boyd �BB��
 gives some speci�c examples of using convex
optimization to numerically determine the limits of performance of a simple control system�
The article by Boyd� Barratt� and Norman �BBN��
 gives an overview of the closed�loop
convex design method�

About the Example in Section 1.4.1

The plant used is described in section ���
 the process and sensor noises are described in
chapter ��� and the precise de�nitions of RMS actuator e�ort� RMS regulation� and step
response overshoot are given in chapters �� �� and ��

The method used to determine the shaded region in �gure ��� is explained in section ������

a similar �gure appears in Kwakernaak and Sivan �KS��	 p���
� The method used to
determine the shaded region in �gure ��� is explained in detail in chapter ���

The exact form of the PD controller was

Kpd�s� �
kp � skd

�� � s�����
� �����
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where kp and kd are constants� the proportional and derivative gains� respectively�

Determining the shaded region shown in �gure ��� required the solution of many global
optimization problems in the variables kp and kd� We �rst used a numerical local op�
timization method designed especially for parametrized controller design problems with
RMS speci�cations
 see� e�g�� the survey by M�akil�a and Toivonen �MT��
� This produced
a region that was likely� but not certain� to be the whole region of achievable speci�cations�
To verify that we had found the whole region� we used the Routh conditions to determine
analytically the region in the kp� kd plane that corresponds to stable closed�loop systems

this region was very �nely gridded and the RMS actuator e�ort and regulation checked
over this grid� This exhaustive search revealed that for this example� the local optimiza�
tion method had indeed found the global minima
 it simply took an enormous amount of
computation to verify that the solutions were global� Of course� in general� local methods
can miss the global minimum� �See the discussion in section ��������

A more sophisticated global optimization algorithm� such as branch�and�bound� could
have been used �see� e�g�� Pardalos and Rosen �PR��
�� But all known global optimization
algorithms involve computation that in the worst case grows exponentially with the number
of variables� A similar �ve parameter global optimization problem would probably be
computationally intractable�
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Part I

A FRAMEWORK FOR
CONTROLLER DESIGN
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Chapter 2

A Framework for Control
System Architecture

In this chapter we describe a formal framework for what we described in chapter �
as the system to be controlled� the control con�guration� and the control law or
controller�

2.1 Terminology and Definitions

We start with a mathematical model of the system to be controlled that includes
the sensors and actuators� We refer to the independent variables in this model as
the input signals or inputs� and the dependent variables as the output signals or
outputs� In this section we describe an important further division of these signals
into those the controller can access and those it cannot�
The inputs to the model include the actuator signals� which come from the

controller� and other signals that represent noises and disturbances acting on the
system� We will see in chapter �� that it may be advantageous to include among
these input signals some �ctitious inputs� These �ctitious inputs are not used to
model any speci�c noise or disturbance� they allow us to ask the question� �what if
a signal were injected here���

De�nition ���� The inputs to the model are divided into two vector signals


� The actuator signal vector� denoted u� consists of the inputs to the model that
can be manipulated by the controller� The actuator signal vector u is exactly
the signal vector generated by the control processor�

� The exogenous input vector� denoted w� consists of all other input signals to
the model�

25
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The number of actuator and exogenous input signals� i�e�� the sizes of u and w�
will be denoted nu and nw� respectively�
Our model of the system must provide as output every signal that we care about�

i�e�� every signal needed to determine whether a proposed controller is an acceptable
design� These signals include the signals we are trying to regulate or control� all
actuator signals �u�� all sensor signals� and perhaps important internal variables�
for example stresses on various parts of a mechanical system�

De�nition ���� The outputs of the model consist of two vector signals


� The sensor signal vector� denoted y� consists of output signals that are acces�
sible to the controller� The sensor signal y is exactly the input signal vector
to the control processor�

� The regulated outputs signal vector� denoted z� consists of every output signal
from the model�

The number of sensor and regulated output signals� i�e�� the sizes of y and z�
will be denoted ny and nz � respectively�
We refer to the model of the system� with the two vector input signals w and u

and the two vector output signals z and y� as the plant� shown in �gure ���� Even
though z includes the sensor signal y� we draw them as two separate signal vectors�

Plant

exogenous inputs w

actuator inputs u

z regulated outputs

y sensed outputs

Figure ��� The plant inputs are partitioned into signals manipulable by
the controller �u� and signals not manipulable by the controller �w�� Among
all of the plant outputs �z� are the outputs that the controller has access to
�y��

When the control system is operating� the controller processes the sensor signal y
to produce the actuator signal u� as shown in �gure ���� We refer to this connection
of the plant and controller as the closed�loop system� The closed�loop system has
input w and output z�

2.1.1 Comparison to the Classical Plant

Our notion of the plant di�ers from that used in classical control texts in several
ways� First� our plant includes information about which signals are accessible to
the controller� whereas in classical control� this is often side information given along
with the classical plant in the controller design problem� For example� what would
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Plant

exogenous inputs w

actuator inputs u

z regulated outputs

y sensed outputs

Controller

Figure ��� The closed�loop system� The controller processes the sensed
signals to produce the actuator signals�

be called a �state�feedback� control system and an �output feedback� control system
for a given classical plant� we describe as closed�loop systems for two di�erent plants�
since the sensed signals �our y� di�er in the two systems� Similarly� the distinction
made in classical control between one degree�of�freedom and two degree�of�freedom
control systems is expressed in our framework as a di�erence in plants�

Second� our plant includes information about where exogenous commands such
as disturbances and noises enter the system� This information is also given as side
information in classical control problems� if it is given at all� In classical control� the
disturbances might be indicated in a block diagram showing where they enter the
system� some important exogenous inputs and regulated variables are commonly left
out� since it is expected that the designer will intuitively know that an acceptable
design cannot excessively amplify� say� sensor noise�

Similarly� our plant makes the signal z explicit�the idea is that z contains every
signal that is important to us� In classical control texts we �nd extensive discussion
of critical signals such as actuator signals and tracking errors� but no attempt is
made to list all of the critical signals for a given problem�

If w and z contain every signal about which we will express a constraint or
speci�cation� then candidate closed�loop systems can be evaluated by simulations
or tests involving only the signals w and z� Thus� speci�cations �in the sense of a
contract� for the control system could be written in terms of w and z only�

We believe that the task of de�ning the signals u� w� y� and z for a system to
be controlled is itself useful� It will help in forming sensible speci�cations for a
controller to be designed and it helps in identifying the simulations that should be
done to evaluate a candidate controller�
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2.1.2 Command Inputs and Diagnostic Outputs

The reader may have noticed that command signals entering the controller and diag�
nostic signals produced by the controller do not appear explicitly in �gure ���� even
though they do in �gures ��� and ���� In this section we show how these operator
interface signals are treated in our framework� Our treatment of command signals
simply follows the de�nitions above� if the command signal is directly accessible to
the controller� then it is included in the signal y� There remains the question of how
the command signals enter the plant� Again� we follow the de�nitions above� the
command signals are plant inputs� not manipulable by the controller �they are pre�
sumably manipulable by some external agent issuing the commands�� and so they
must be exogenous inputs� and therefore included in w� Often� exogenous inputs
that are commands pass directly through the plant to some of the components of
y� as shown in �gure ���� Diagnostic outputs are treated in a similar way�

wsystem

usystem

zsystem

ysystem

System

Controller
diagnostic
outputs

command
inputs

Figure ��� The controller may accept command signals as inputs and
produce diagnostic and warning signals as outputs �see �gure ����� This is
described in our framework by including the command signals in w and y�
and the diagnostic and warning signals in u and z� as shown in �gure ����

2.2 Assumptions

In this book we make the following assumptions�

Assumption ���� The signals w� u� z� and y are real vector�valued continuous�
time signals� i�e�� functions from a real� nonnegative time variable into the appro�
priately dimensioned vector space


w � R� � Rnw � u � R� � Rnu � z � R� � Rnz � y � R� � Rny �
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System

Controller

Plant

wsystem
wcommands

usystem

udiag

zsystem
zdiag

ysystem

ycommands

w
n o

z

u
n o

y

Figure ��� In our framework the command signals are included in w and
pass through the plant to y� so that the controller has access to them�
Similarly� diagnostic signals produced by the controller are included in u�
and pass through the plant to z�

Assumption ���� The plant is linear and time�invariant �LTI	 and lumped� i�e��
described by a set of constant coe�cient linear di�erential equations with zero initial
conditions�

Assumption ���� The controller is also LTI and lumped�

The di�erential equations referred to will be described in detail in section ����

2.2.1 Some Comments

About assumption ����

� Many important plants are highly nonlinear� e�g�� mechanical systems that
undergo large motions�

� Assumption ��� is always an approximation� only good for certain ranges of
values of system signals� over certain time intervals or frequency ranges� and
so on�

About assumption ����

� Even if the plant is LTI� it is still a restriction for the controller to be LTI�

� We have already noted that control systems that use digital control processors
process sampled signals� These controllers are linear� but time�varying�
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We wish to emphasize that our restriction to LTI plants and controllers is hardly
a minor restriction� even if it is a commonly made one� Nevertheless� we believe the
material of this book is still of great value� for several reasons�

� Many nonlinear plants are well modeled as LTI systems� especially in regulator
applications� where the goal is to keep the system state near some operating
point�

� A controller that is designed on the basis of an approximate linear model of
a nonlinear plant often works well with the nonlinear plant� even if the linear
model of the plant is not particularly accurate� �See the Notes and References
at the end of this chapter��

� Some of the e�ects of plant nonlinearities can be accounted for in the frame�
work of an LTI plant and controller� �See chapter ����

� Linear control systems often form the core or basis of control systems designed
for nonlinear systems� for example in gain�scheduled or adaptive control sys�
tems� �See the Notes and References at the end of this chapter��

� A new approach to the control of nonlinear plants� called feedback lineariza�
tion� has recently been developed� If feedback linearization is successful� it
reduces the controller design problem for a nonlinear plant to one for which
assumption ��� holds� �See the Notes and References at the end of this chap�
ter��

� Even when the �nal controller is time�varying �e�g�� when implemented on
a digital control processor�� a preliminary design or analysis of achievable
performance is usually carried out under the assumption ���� This design or
analysis then helps the designer select appropriate sample rates�

� The results of this book can be extended to cover linear time�varying plants
and controllers� in particular� the design of single�rate or multi�rate digital
controllers� �See chapter ����

2.2.2 Transfer Matrix Notation

We will now brie�y review standard notation for LTI systems� Consider an LTI
system with a single �scalar� input a and a single �scalar� output b� Such a system
is completely described by its transfer function� say G� so that

B�s� � G�s�A�s�� �����



2.2 ASSUMPTIONS 31

where A and B are the Laplace transforms of the signals a and b respectively�

A�s� �

Z
�

�

a�t�e�st dt�

B�s� �

Z
�

�

b�t�e�st dt�

Equivalently� the signals a and b are related by convolution�

b�t� �

Z t

�

g���a�t� �� d�� �����

where g is the impulse response of the linear system�

G�s� �

Z
�

�

g�t�e�st dt�

We will write ����� and ����� as

b � Ga� �����

We will also use the symbol G to denote both the transfer function of the LTI
system� and the LTI system itself� An interpretation of ����� is that the LTI system
G acts on the input signal a to produce the output signal b� We say that G is the
transfer function from a to b�
Identical notation is used for systems with multiple inputs and outputs� For

example� suppose that an LTI system has n inputs and m outputs� We collect the
scalar input signals a�� � � � � an to form a vector input signal a�

a�t� �

�
��

a��t�
���

an�t�

�
�� �

and similarly� we collect the output signals to form the vector signal b� The system
is completely characterized by its transfer matrix� say G� which is an m� n matrix
of transfer functions� All of the previous notation is used to represent the multiple�
input� multiple�output �MIMO� system G and its vector input signal a and vector
output signal b�

2.2.3 Transfer Matrix Representations

A consequence of assumption ��� is that the plant can be represented by a transfer
matrix P � with a vector input consisting of the vector signals w and u� and a
vector output consisting of the vector signals z and y� Similarly� a consequence of
assumption ��� is that the controller can be represented by a transfer matrix K�
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with a vector input y and vector output u� We partition the plant transfer matrix
P as

P �

�
Pzw Pzu
Pyw Pyu

�
�

so that

z � Pzww  Pzuu� �����

y � Pyww  Pyuu� �����

Thus� Pzw is the transfer matrix from w to z� Pzu is the transfer matrix from u
to z� Pyw is the transfer matrix from w to y� and Pyu is the transfer matrix from u
to y� This decomposition is shown in �gure ���� We will emphasize this partitioning
of the plant with dark lines�

P �

�
Pzw Pzu
Pyw Pyu

�
�

Pzw

Pyw

Pzu

Pyu

exogenous inputs w

actuator inputs u

z regulated outputs

y sensor outputs

r
�

�

r
�

�

q

q

Figure ��� The decomposed LTI plant�

Now suppose the controller is operating� so that in addition to ��������� we have

u � Ky� �����

We can solve for z in terms of w to get

z �
�
Pzw  PzuK�I � PyuK�

��Pyw
	
w�

provided det�I � PyuK� is not identically zero� a well�posedness condition that we
will always assume�
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De�nition ���� The closed�loop transfer matrix H is the transfer matrix from w
to z� with the controller K connected to the plant P 


H
�
� Pzw  PzuK�I � PyuK�

��Pyw� ���	�

Thus

z � Hw� �����

The entries of the transfer matrix H are the closed�loop transfer functions from
each exogenous input to each regulated variable� These entries might represent� for
example� closed�loop transfer functions from some disturbance to some actuator�
some sensor noise to some internal variable� or some command signal to some ac�
tuator signal� The formula ���	� above shows exactly how each of these closed�loop
transfer functions depends on the controller K�

A central theme of this book is that H should contain every closed�loop transfer
function of interest to us� Indeed� we can arrange for any particular closed�loop
transfer function in our system to appear in H� as follows� Consider the closed�loop
system in �gure ��� with two signals A and B which are internal to the plant� If our
interest is the transfer function from a signal injected at point A to the signal at
point B� we need only make sure that one of the exogenous signals injects at A� and
that the signal at point B is one of our regulated variables� as shown in �gure ��	�

P

K

w

u

z

y
A

B

Figure ��� Two signals A and B inside the plant P �
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P

K

w
n

u

o
z

y
A

B

r

�

�

q

Figure ��� Accessing internal signals A and B from w and z�

2.3 Some Standard Examples from Classical Control

In this section we present various examples to illustrate the concepts introduced
in this chapter� We will also de�ne some classical control structures that we will
periodically refer to�

2.3.1 The Classical Regulator

In this section we consider the classical single�actuator� single�sensor �SASS� reg�
ulator system� A conventional block diagram is shown in �gure ���� We use the
symbol P� to denote the transfer function of the classical plant� The negative sign
at the summing junction re�ects the classical convention that feedback should be
�negative��

P�K
�e u yp

� r
�

�

Figure ��� Conventional block diagram of a classical single�actuator�
single�sensor regulator system�

The signal e is called the error signal� it is the di�erence between the system
output yp and the reference or desired output� which is zero for the regulator� The
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goal of the regulator design is to keep yp small� and u not too large� despite the
disturbances that act on the system�

The conventional block diagram in �gure ��� does not show the disturbances
that act on the system� nor does it explicitly show which signals are of interest to
us� this is side information in a conventional description of the regulator problem�
To cast the classical regulator in our framework� we �rst add to the block diagram
in �gure ��� inputs corresponding to disturbances and outputs indicating the signals
of importance to us� One way to do this is shown in �gure ����

P�K

u nproc yp nsensor

r

�

�
r

�

�
� r

�

�

q q

Figure ��	 Classical regulator system with exogenous inputs and regulated
outputs�

The disturbance nproc is an actuator�referred process noise� it is the signal that
recreates the e�ect of system disturbances on the system output when it is added
to the actuator signal� The disturbance nsensor is a sensor noise� Even if this sensor
noise is small� its existence in �gure ��� emphasizes the important fact that the
sensor signal �yp  nsensor� is not exactly the same as the system output that we
wish to regulate �yp��

The output signals we have indicated in �gure ��� are the actuator signal u and
the system output yp� since these signals will be important in any regulator design�

The reader can think of the four explicit inputs and output signals we have added
to the classical regulator system as required for a realistic simulation or required to
evaluate a candidate controller� For a particular problem� it may be appropriate to
include other input or output signals� e�g�� the error signal e�

We can now de�ne the signals used in our framework� For the exogenous input
vector we take the process noise nproc and the sensor noise nsensor�

w �

�
nproc
nsensor

�
�

We take the vector of regulated outputs to consist of the system output yp and the
actuator signal u�

z �

�
yp
u

�
�
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The control input of the plant is just the actuator signal u� and the sensed output
is the negative of the system output signal corrupted by the sensor noise�

y � ��yp  nsensor��

Note that this is the signal that enters the controller in �gure ����
The plant has three inputs and three outputs� its transfer matrix is

P �

�
Pzw Pzu
Pyw Pyu

�
�

�
� P� � P�

� � �
�P� �� �P�

�
� �

A block diagram of the closed�loop system is shown in �gure ����� Using equa�
tion ���	�� we �nd that the closed�loop transfer matrix H from w to z is

H �

�
����

P�
�  P�K

�
P�K

�  P�K

�
P�K

�  P�K
�

K

�  P�K

�
���� � �����

P

P�

nsensor
nproc yp

u

r
�

�
r

�

�

w
n

u

o
z

y

K

q

q

Figure ���
 The closed�loop regulator�

For future reference� we note the following terms from classical control�

� L
�
� P�K is called the loop gain�

� S
�
� ����  L� is called the sensitivity transfer function�

� T
�
� �� S is called the complementary sensitivity transfer function�

Using these de�nitions� the classical designer might write the closed�loop transfer
matrix H as

H �

�
SP� �T
�T �T�P�

�
�



2.3 SOME STANDARD EXAMPLES FROM CLASSICAL CONTROL 37

Each entry of H� the ��� closed�loop transfer matrix from w to z� is signi�cant�
The �rst row consists of the closed�loop transfer functions from the process and
sensor noises to the output signal yp� our goal is to make these two transfer functions
�small� in some appropriate sense� The �size� of these two transfer functions tells
us something about the closed�loop regulation achieved by our control system� The
second row consists of the closed�loop transfer functions from the process and sensor
noises to the actuator signal� and thus is related to the actuator e�ort our control
system uses�
The idea is that H contains all the closed�loop transfer functions of interest in

our regulator design� Thus� the performance of di�erent candidate controllers could
be compared by their associated H�s� using ���	�� the speci�cations for a regulator
design could be expressed in terms of the four transfer functions in H�

2.3.2 The Classical 1-DOF Control System

A simple extension of the regulator is the classical one degree�of�freedom ���DOF�
controller� shown in �gure ����� In the ��DOF control system� the reference signal�
denoted r� is an external input that can change with time� the regulator is just
the ��DOF controller with the reference input �xed at zero� The basic goal in the
design of the ��DOF control system is to keep the system output yp close to the
reference signal r� despite the disturbances nproc and nsensor� while ensuring that
the actuator signal u is not too large� The di�erence between the system output
signal and the reference signal is called the tracking error� and denoted e�

e � yp � r�

�The tracking error is not shown in �gure ���� or included in z� although it could
be��

P�K

u nproc yp nsensor

r

�

�
r

�

�
r

�

�

r q q

Figure ���� Classical ��DOF control system�

We now describe the ��DOF control system in our framework� As described in
section ����� the reference input r is an exogenous input� along with the process
and sensor noises� so we take the exogenous input vector to be

w �

�
� nproc

nsensor
r

�
� �
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The control input of the plant is again the actuator signal u� and we can take the
vector of regulated outputs to be the same as for the regulator�

z �

�
yp
u

�
�

The sensed output y for the ��DOF control system must be determined carefully�
The controller in the ��DOF control system does not have direct access to the
corrupted system output� yp  nsensor� Instead� the controller input is the tracking
error signal corrupted by the sensor noise�

y � r � yp � nsensor�

The plant has four inputs and three outputs� its transfer matrix is

P �

�
Pzw Pzu
Pyw Pyu

�
�

�
� P� � � P�

� � � �
�P� �� � �P�

�
� � ������

The ��DOF control system is shown in our framework in �gure �����
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�

�
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�

�
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�

�
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y

K

q

q

Figure ���� The ��DOF control system in our framework�

The closed�loop transfer matrix H now has three inputs and two outputs�

H �

�
����

P�
�  P�K

�
P�K

�  P�K

P�K

�  P�K

�
P�K

�  P�K
�

K

�  P�K

K

�  P�K

�
���� � ������

The closed�loop transfer matrix H in this example consists of the closed�loop trans�
fer matrix of the classical regulator� described in section ������ with a third column
appended� The third column consists of the closed�loop transfer functions from
the reference signal to the regulated variables� Its �rst entry� H��� is the transfer
function from the reference input to the system output� and is called the input�
output �I
O� transfer function of the ��DOF control system� It is the same as the
complementary sensitivity transfer function�
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2.3.3 The Classical 2-DOF Control System

A generalization of the classical ��DOF control system is the classical two degree�
of�freedom ���DOF� control system� A conventional block diagram of the ��DOF
control system is shown in �gure ����� The key di�erence between the ��DOF
and ��DOF control systems is that in the former� the controller processes only the
corrupted error signal to produce the actuator signal� whereas in the latter� the
controller has access to both the reference and the corrupted system output signals�

P�K

u nproc yp nsensor

r

�

�
r

�

�r

� r
�

�

q q

Figure ���� Conventional block diagram of a classical ��DOF control sys�
tem�

To describe the ��DOF control system in our framework� we take the same
actuator� exogenous input� and regulated variables signals as for the ��DOF control
system�

u� w �

�
� nproc

nsensor
r

�
� � z �

�
yp
u

�
� ������

The sensor signal for the ��DOF control system is not the same as for the ��DOF
control system� it is

y �

�
�yp � nsensor

r

�
�

�
!y
r

�
� ������

The ��DOF control system is shown in our framework in �gure ����� The plant
has four inputs and four outputs� its transfer matrix is

P �

�
Pzw Pzu
Pyw Pyu

�
�

�
���

P� � � P�
� � � �

�P� �� � �P�
� � � �

�
��� � ������

The controller K in the ��DOF control system has two inputs and one output�
If we write its transfer matrix as

K �
�
K�y Kr

�
������
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Figure ���� The closed�loop ��DOF system�

�the subscripts remind the reader of the interpretation�� then the closed�loop trans�
fer matrix H is

H �

�
����

P�
�  P�K�y

�
P�K�y

�  P�K�y

P�Kr

�  P�K�y

�
P�K�y

�  P�K�y
�

K�y

�  P�K�y

Kr

�  P�K�y

�
���� � ������

Just as in the ��DOF control system� the closed�loop transfer matrix H consists
of the closed�loop transfer matrix of the classical regulator described in section �����
with a third column appended� The interpretations of the elements of H are the
same as in the ��DOF control system� and hence we can compare the two control
systems� If K�y � Kr� then the closed�loop transfer matrix for the ��DOF control
system is the same as the closed�loop transfer matrix for the ��DOF control system�
Thus� the ��DOF control system is more general than the ��DOF control system�

2.3.4 2-DOF Control System with Multiple Actuators and Sensors

The standard examples described in the previous sections can be extended to plants
with multiple actuators and multiple sensors �MAMS�� by interpreting the various
signals as vector signals and expressing the transfer functions as the appropriate
transfer matrices� As an example� we describe the MAMS ��DOF control system�

The block diagrams shown in �gures ���� and ���� can describe the MAMS
��DOF control system� provided we interpret all the �previously scalar� signals as
vector signals� The signals w� u� z� and y are given by the expressions ������
and ������� the plant transfer matrix is essentially the same as ������� with the ones
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and zeros replaced by the appropriate identity and zero matrices�

P �

�
���

P� �n
�y�n�y

�n
�y�nr P�

�nu�nu �nu�n�y
�nu�nr Inu�nu

�P� �In
�y�n�y

�n
�y�nr �P�

�nr�nu �nr�n�y
Inr�nr �nr�nu

�
��� ����	�

�the subscripts indicate the sizes� nr is the size of the reference signal r� and need
not be the same as n�y� the size of the yp�� In the sequel we will not write out the
sizes so explicitly�

We partition the nu�ny transfer matrixK as in ������� such thatK�y is an nu�n�y

transfer matrix� and Kr is an nu � nr transfer matrix �note that ny � n�y  nr��
The closed�loop transfer matrix H is a generalization of �������

H �

�
SP� �P�K�yS SP�Kr

�K�ySP� �K�yS !SKr

�
� ������

where

S � �I  P�K�y�
���

!S � �I  K�yP��
���

S is called the sensitivity matrix of the MAMS ��DOF control system� To distin�
guish it from !S� S is sometimes called the output�referred sensitivity matrix� for
reasons that will become clear in chapter �� The I
O transfer matrix of the MAMS
��DOF system is

T � �I  P�K�y�
��P�Kr � P��I  K�yP��

��Kr�

which is the closed�loop transfer matrix from the reference input r to the system
output signal yp�

2.4 A Standard Numerical Example

In this section we describe a particular plant and several controllers that will be
used in examples throughout this book� We consider the ��DOF control system�
described in section ������ with

P� � P std
�

�
�
�

s�
��� s

��  s
�

P std
� consists of a double integrator with some excess phase from the allpass term
���� s�����  s�� which approximates a ��� second delay at low frequencies�
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In various future examples we will encounter the controllers

K�a��s�
�
�

�����s�  ��	��s ��

s�  ��s�  �����s 	����
�

K�b��s�
�
�

�����s�  ��	����s 	����

s�  �����s�  ������s ������
�

K�c��s�
�
�

�����s�  �	�s ������

s�  �����s�  �����	s ������
�

K�d��s�
�
�

�����s�  ������s 		���

s�  �����s�  �����s �����
�

The corresponding closed�loop transfer matrices� which we denote H�a�� H�b�� H�c��
and H�d� respectively� can be computed from ������� The closed�loop systems that
result from using the controllers K�a�� K�b�� K�c�� and K�d� can be compared by
examining the � � � transfer matrices H�a�� H�b�� H�c�� and H�d�� For example�

�gure ���� shows jH
�a�
�� �j��j� jH

�b�
�� �j��j� jH

�c�
�� �j��j� and jH

�d�
�� �j��j� i�e�� the mag�

nitudes of the closed�loop transfer functions from nsensor to yp� From this �gure�
we can conclude that a high frequency sensor noise will have the greatest e�ect on
yp in the closed�loop system with the controller K�b�� and the least e�ect in the
closed�loop system with controller K�d��

�

���
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�� �j��
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Figure ���� Magnitudes of the closed�loop transfer functions from nsensor
to yp for the four di�erent closed�loop transfer matrices�
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2.5 A State-Space Formulation

We will occasionally refer to state�space realizations of the plant� controller� and
closed�loop system� The general multiple�actuator� multiple�sensor �MAMS� plant
P takes two vectors of input signals �w and u� and produces two vectors of output
signals �z and y�� a state�space realization of the plant is thus�

�x � APx	Bww 	Buu �
����

z � Czx	Dzww 	Dzuu �
�

�

y � Cyx	Dyww 	Dyuu� �
�
��

�with x�
� � 
�� so that

P �s� �

�
Pzw�s� Pzu�s�
Pyw�s� Pyu�s�

�
� CP �sI �AP �

��BP 	DP �

where

BP �
�
Bw Bu

�

CP �

�
Cz

Cy

�

DP �

�
Dzw Dzu

Dyw Dyu

�
�

Many plant models encountered in practice have the property that Dyu � 
� or
equivalently� Pyu��� � 
� such plants are called strictly proper� For strictly proper
plants� the state�space formulas that we will encounter are greatly simpli�ed� so we
make the following assumption�

Assumption ���� The plant is strictly proper� Dyu � 
 �i�e�� Pyu��� � 
��

This assumption is not substantial� we make it for convenience and aesthetic reasons�
The more complicated state�space formulas for the case Dyu �� 
 can be found in
the Notes and References that we cite at the end of each chapter�

Suppose that our controller has state�space realization

�xK � AKxK 	BKy �
�

�

u � CKxK 	DKy� �
�
��

so that

K�s� � CK�sI �AK���BK 	DK �

A state�space realization of the closed�loop system can be found by eliminating u

and y from �
����
�
�� and �
�

�
�
���

�x � �AP 	BuDKCy�x	BuCKxK 	 �Bw 	BuDKDyw�w �
�
��

�xK � BKCyx	AKxK 	BKDyww �
�
��

z � �Cz 	DzuDKCy�x	DzuCKxK 	 �Dzw 	DzuDKDyw�w �
�
��
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so that

H�s� � CH�sI �AH���BH 	DH � �
�
��

where

AH �

�
AP 	BuDKCy BuCK

BKCy AK

�

BH �

�
Bw 	BuDKDyw

BKDyw

�

CH �
�
Cz 	DzuDKCy DzuCK

�
DH � Dzw 	DzuDKDyw�

The state�space realization of the closed�loop system is shown in �gure 
����

P

�sI � AP �
��
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Cy
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r
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�
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�
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�

w z

K

�sI �AK�
��
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q

q

q q

BKCK

x

xK

Figure ���� State�space realizations of the plant and controller connected
to form a state�space realization of the closed�loop system�



NOTES AND REFERENCES 45

Notes and References

Standard Descriptions and Nomenclature for Control Systems

In ����� the Feedback Control Systems Committee of the AIEE approved an AIEE Pro�
posed Standard of Terminology for Feedback Control Systems� which included a standard
for the block diagram �see 	AIE��
 and 	NGK��
��

Two-Input, Two-Output Plant Description

The description of a plant that explicitly shows the exogenous input and the regulated
variables is now common� and the symbols w� u� z� and y are becoming standard� They
appear� for example� in Francis 	Fra��
� Nett 	Net��
 explicitly discusses the command
inputs to the controller and the diagnostic outputs from the controller� which he denotes
w� and z�� respectively �see �gures ��
 and �����

An example of a diagnostic output is the output prediction error of an observer� a sub�
stantial increase in the size of this signal may indicate that the plant is no longer a good
model of the system to be controlled� i�e�� some system failure has occurred� This idea is
treated in the survey by Isermann 	Ise��
�

Nonlinear Controllers Based on LTI Controllers

Several methods for designing nonlinear controllers for nonlinear plants are based on the
design of LTI controllers� e�g��

� Linear variational method� An LTI controller is designed for an approximate LTI
model of a nonlinear plant �near some equilibrium point�� We will see a speci�c
example of this in chapter ���

� Gain scheduling� For a family of equilibrium points� approximate LTI models of a
nonlinear plant are developed� and for each of these LTI models an LTI controller
is designed� On the basis of the sensed signals� y� an estimate is made of the
equilibrium point that is �closest� to the current plant state� and the corresponding
LTI controller is �switched in�� The overall controller thus consists of a family of
LTI controllers along with a selection algorithm� this overall controller is nonlinear�

In cases where a sensor can readily or directly measure this �closest� equilibrium
point� and the family of LTI controllers di�er only in some parameter values or
�gains�� the resulting controller is called gain scheduled� For example� many aircraft
controllers are gain scheduled� the equilibrium points might be parametrized by
altitude and airspeed�

� Adaptive control� An adaptive controller uses an identi�cation procedure based
on the signals y and u to estimate the �closest� equilibrium point� or other system
parameters� This estimate is often used for gain scheduling� See for example 	AW���
SB��� GS��� ABJ��
�

� Feedback linearization� In many cases� it is possible to construct a preliminary
nonlinear feedback that makes the plant� with the preliminary feedback loop closed�
linear and time�invariant� and thus amenable to the methods of this book� This idea
is studied in the �eld of geometric control theory � see for example 	HSM��
� A clear
exposition can be found in chapters � and � of the book by Isidori 	Isi��
� which
also has many references�
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Control System Architectures
A description of di�erent control architectures can be found in� e�g�� Lunze 	Lun��� p��
�
Anderson and Moore 	AM�	� p
�

� and Maciejowski 	Mac��� x���
� Discussions of
control architectures appear in the articles 	DL��
 and 	Net��
�

We noted that the ��DOF control system is more general than the ��DOF control system�
and yet the ��DOF control system architecture is widely chosen� In some cases� the
actual sensor used is a di�erential sensor� which directly senses the di�erence between
the reference and the system output� so that the ��DOF plant accurately re�ects signals
accessible to the controller� But in many cases� the system output signal and the reference
input signal are separately sensed� as in the ��DOF controller� and a design decision is
made to have the controller process only their di�erence�

One possible reason for this is that the block diagram in �gure ���� has been widely used
to describe the general feedback paradigm� In The Origins of Feedback Control 	May�	
�
for example� Mayr de�nes feedback control as forming u from the error signal e �i�e�� the
��DOF control system�� It would be better to refer to the general principle behind the
��DOF control system as the error�nulling paradigm� leaving feedback paradigm to refer to
the more general scheme depicted in �gure ����

The Standard Example Plant
The idea of using a double integrator plant with some excess phase as a simple but realistic
typical plant with which to explore control design tradeo�s is taken from a study presented
by Stein in 	FBS��
� A discretized version of our standard example plant is considered in
Barratt and Boyd 	BB��
�

State-Space Descriptions
Comprehensive texts include Kailath 	Kai�	
� Chen 	Che��
� an earlier text is Zadeh and
Desoer 	ZD��
� The appendices in the book by Anderson and Moore 	AM�	
 contain all
of the material about state�space LTI systems that is needed for this book�



Chapter 3

Controller Design
Specifications and Approaches

In this chapter we develop a uni�ed framework for describing the goals of con�
troller design in terms of families of boolean design speci�cations� We show how
various approaches� e�g�� multicriterion optimization or classical optimization� can
be described in this framework�

Just as there are many di�erent architectures or con�gurations for control systems�
there are many di�erent general approaches to expressing the design goals and
objectives for controller design� One example is the optimal controller paradigm� the
goal is to determine a controller that minimizes a single cost function or objective�
In another approach� multicriterion optimization� several di�erent cost functions are
speci�ed and the goal is to identify controllers that perform mutually well on these
goals� The purpose of this chapter is to develop a uni�ed framework for describing
design speci�cations� and to explain how these various approaches can be described
using this framework�

Throughout this chapter� we assume that a �xed plant is under consideration�
the signals w� u� z� and y have been de�ned� and the plant transfer matrix P has
been determined� As described in chapter 
� the de�nitions of the exogenous input
w and the regulated variables z should contain enough signals that we can express
every goal of the controller design in terms of H� the closed�loop transfer matrix
from w to z�

3.1 Design Specifications

We begin by de�ning the basic or atomic notion of a design speci�cation�

47
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De�nition ���� A design speci�cation D is a boolean function or test on the closed�
loop transfer matrix H�

Thus� for each candidate closed�loop transfer matrix H� a design speci�cation D is
either satis�ed or not satis�ed � design speci�cations are simple tests� with a �pass�
or �fail� outcome� A design speci�cation is a predicate on transfer matrices� i�e�� a
function that takes an nz � nw transfer matrix as argument and returns a boolean
result�

D � H �� fPASS� FAILg �

where H denotes the set of all nz � nw transfer matrices�

It may seem strange to the reader that we express design speci�cations in terms
of the closed�loop transfer matrix H instead of the controller transfer matrix K�
since we really design the controller transfer matrix K� and not the resulting closed�
loop transfer matrix H� Of course� to each candidate controllerK there corresponds
the resulting closed�loop transfer matrix H �given by the formula �
��� in de�ni�
tion 
���� which either passes or fails a given design speci�cation� hence� we can
think of a design speci�cation as inducing a boolean test on the transfer matrices of
candidate controllers� In fact� we will sometimes abuse notation by saying �the con�
troller K satis�es D�� meaning that the corresponding closed�loop transfer matrix
H satis�es D�

Such a PASS�FAIL test on candidate controllers would be logically equivalent
to the design speci�cation� which is a PASS�FAIL test on closed�loop transfer ma�
trices� and perhaps more natural� We will see in chapter �� however� that there are
important geometric advantages to expressing design speci�cations in terms of the
closed�loop transfer matrix H and not directly in terms of the controller K�

3.1.1 Some Examples

Some possible design speci�cations for the standard example described in section 
��
are�

� Maximum step response overshoot� Dos will denote the design speci�cation
�the step response overshoot from the reference signal to yp is less than �
���

Let us express Dos more explicitly in terms of H� the 
�� closed�loop transfer
matrix� The reference signal r is the third exogenous input �w��� and yp is the
�rst regulated variable �z��� so H�� is the closed�loop transfer function from
the reference signal to yp� and its step response is given by

s�t� �
�


�

Z �

��

H���j��

j�
ej�t d��
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for t � 
� Thus� Dos can be expressed as

Dos �
�


�

Z �

��

H���j��

j�
ej�t d� � ��� for all t � 
�

� Maximum RMS actuator e�ort� Dact e� will denote the design speci�cation�
�the RMS value of the actuator signal due to the sensor and process noises is
less than 
����

We shall see in chapters � and � that Dact e� can be expressed as

Dact e� �
�


�

Z �

��

�
jH���j��j

�Sproc��� 	 jH���j��j
�Ssensor���

�
d� � 
����

where Sproc and Ssensor are the power spectral densities of the noises nproc
and nsensor� respectively�

� Closed�loop stability� Dstable will denote the design speci�cation� �the closed�
loop transfer matrix H is achieved by a controller that stabilizes the plant��
�The precise meaning of Dstable can be found in chapter ���

A detailed understanding of these design speci�cations is not necessary in this
chapter� the important point here is that given any 
 � � transfer matrix H� each
of the design speci�cations Dos� Dact e� � and Dstable is either true or false� This
is independent of our knowing how to verify whether a design speci�cation holds
or not for a given transfer matrix� For example� the reader may not yet know of
any explicit procedure for determining whether a transfer matrix H satis�es Dstable�
nevertheless it is a valid design speci�cation�

These design speci�cations should be contrasted with the associated informal
design goals �the step response from the reference signal to yp should not overshoot
too much� and �the sensor and process noises should not cause u to be too large��
These are not design speci�cations� even though these qualitative goals may better
capture the designer�s intentions than the precise design speci�cations Dos and
Dact e� � Later in this chapter we will discuss how these informal design goals can
be better expressed using families of design speci�cations�

3.1.2 Comparing and Ordering Design Specifications

In some cases� design speci�cations can be compared� We say that design speci�
�cation D� is tighter or stronger than D� �or� D� is looser or weaker than D�� if
all transfer matrices that satisfy D� also satisfy D�� We will say that D� is strictly
tighter or strictly stronger than D� if it is tighter and in addition there is a transfer
matrix that satis�es D� but not D��

An obvious but extremely important fact is that given two design speci�cations�
it is not always possible to compare them� it is possible that neither is a stronger
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speci�cation� The ordering of design speci�cations by strength is a partial ordering�
not a linear or total ordering� We can draw a directed graph of the relations between
di�erent speci�cations by connecting strictly weaker speci�cations to stronger ones
by arrows� and deleting the arrows that follow from transitivity �i�e�� D� is stronger
than D� which is stronger than D� implies D� is stronger than D��� An example
of a linear ordering is shown in �gure ����a�� every pair of speci�cations can be
compared since there is a directed path connecting any two speci�cations� By
comparison� a partial but not linear ordering of design speci�cations is shown in
�gure ����b�� Speci�cation DD is tighter than DC� which in turn is tighter than
both DA and DB� Similarly� speci�cation DG is tighter than DE� which is itself
tighter than DC� However� speci�cations DE and DD cannot be compared� nor can
the design speci�cations DG and DD�

r DA
r DA

r DB

r DB
r DC

r DC
r DD

r DD

r DE

r DF
r DG

�a� �b�

Figure ��� In these directed graphs each node represents a speci�cation�
Arrows connect a weaker speci�cation to a tighter one� The graph in �a�
shows a linear ordering� all speci�cations can be compared� The graph
in �b� shows a partial� but not linear� ordering� some speci�cations can
be compared �e�g�� DD is tighter than DA�� but others cannot �e�g�� DF is
neither weaker nor tighter than DD��

We may form new design speci�cations from other design speci�cations using
any boolean operation� for example conjunction� meaning joint satisfaction�

D� � D� � H satis�es D� and D��

The new design speci�cation D� � D� is tighter than both D� and D��

We say that a design speci�cation is infeasible or inconsistent if it is not satis�ed
by any transfer matrix� it is feasible or consistent if it is satis�ed by at least one
transfer matrix� We say that the set of design speci�cations fD�� � � � �DLg is jointly
infeasible or jointly inconsistent if the conjunction D� � 	 	 	 �DL is infeasible� if the
conjunction D��	 	 	�DL is feasible� then we say that the set of design speci�cations
fD�� � � � �DLg is jointly feasible or achievable�
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3.2 The Feasibility Problem

Given a speci�c set of design speci�cations� we can pose the feasibility problem of
determining whether all of our design speci�cations can be simultaneously satis�ed�

De�nition ���� Feasibility controller design problem� given a set of design speci�
�cations fD�� � � � �DLg� determine whether it is jointly feasible� If so� �nd a closed�
loop transfer matrix H that meets the design speci�cations D�� � � � �DL�

Like design speci�cations� the feasibility problem has a boolean outcome� If this
outcome is negative� we say the set of design speci�cations fD�� � � � �DLg is too tight�
infeasible� or unachievable� if the outcome of the feasibility problem is positive� we
say that fD�� � � � �DLg is achievable or feasible� It is only for ease of interpretation
that we pose the feasibility problem in terms of sets of design speci�cations� since
it is equivalent to feasibility of the single design speci�cation D� � 	 	 	 � DL�

The feasibility problem is not meant by itself to capture the whole controller
design problem� rather it is meant to be a basic or atomic problem that we can
use to describe other� more subtle� formulations of the controller design problem�
In the rest of this chapter we will describe various design approaches in terms of
families of feasibility problems� This is exactly like our de�nition of the standard
plant� which is meant to be a standard form in which to describe the many possible
architectures for controllers� The motivation is the same�to provide the means to
sensibly compare apparently di�erent formulations�

3.3 Families of Design Specifications

A single �xed set of design speci�cations usually does not adequately capture the no�
tion of �suitable� or �satisfactory� system performance� which more often involves
tradeo�s among competing desirable qualities� and speci�cations with varying de�
grees of hardness� Hardness is a quality that describes how �rmly the designer
insists on a speci�cation� or how �exible the designer is in accepting violations of
a design speci�cation� Thus� the solution of a single� �xed� feasibility problem may
be of limited utility� These vaguer notions of satisfactory performance can be mod�
eled by considering families of related feasibility problems� The designer can then
choose among those sets of design speci�cations that are achievable�

To motivate this idea� we consider again the speci�cations described in sec�
tion ������ Suppose �rst that the solution to the feasibility problem with the set of
speci�cations fDos� Dact e� � Dstableg is a�rmative� and that H simultaneously sat�
is�es Dos� Dact e� � and Dstable� If the set of speci�cations fDos� Dact e� � Dstableg ad�
equately captures our notion of a satisfactory design� then we are done� But the de�
signer may wonder how much smaller the overshoot and actuator e�ort can be made
than the original limits of �
� and 
��� respectively� In other words� the designer
will often want to know not just that the set of speci�cations fDos� Dact e� � Dstableg
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is achievable� but in addition how much these speci�cations could be tightened while
remaining achievable�

A similar situation occurs if the solution to the feasibility problem with the
design speci�cations fDos� Dact e� � Dstableg is negative� In this case the designer
might like to know how �close� this set of design speci�cations is to achievable� For
example� how much larger would the limit on overshoot have to be made for this
set of design speci�cations to be achievable�

Questions of this sort can be answered by considering families of design spec�
i�cations� which are often indexed by numbers� In our example above� we could
consider a family of overshoot speci�cations indexed� or parametrized� by the al�
lowable overshoot� For a� � 
 we de�ne

D�a��
os � overshoot of step response from r to yp � a���

Note that D
�a��
os is a di�erent speci�cation for each value of a�� Similarly� a family

of actuator e�ort speci�cations for a� � 
 is

D
�a��
act e� � RMS deviation of u due to the sensor and actuator noises � a��

Thus for each a� � 
 and a� � 
 we have a di�erent set of design speci�cations�

D�a��a�� �
� D�a��

os � D
�a��
act e� � Dstable�

Suppose we solve the feasibility problem with design speci�cations D�a��a�� for
each a� and a�� shading the area in the �a�� a�� plane corresponding to feasible
D�a��a��� as shown in �gure ��
� We call the shaded region in �gure ��
� with some
abuse of notation� a plot of achievable speci�cations in performance space�

From this plot we can better answer the vague questions posed above� Our
original set of design speci�cations corresponds to a� � �
� and a� � 
��� shown
as DX in �gure ��
� From �gure ��
 we may conclude� for example� that we may
tighten the overshoot speci�cation to a� � �� and still have an achievable set
of design speci�cations �DY in �gure ��
�� but if we further tighten the overshoot
speci�cation to a� � ��� we have a set of speci�cations �DZ� that is too tight�
Alternatively� we could tighten the actuator e�ort speci�cation to a� � 
�
� and
also have an achievable set of design speci�cations �DW��

By considering the feasibility problem for families of design speci�cations� we
have considerably more information than if we only consider one �xed set of speci��
cations� and therefore are much better able to decide what a satisfactory design is�
We will return to a discussion of this general idea� and this particular example� after
we describe a general and common method for parametrizing design speci�cations�

3.4 Functional Inequality Specifications

The parametrized families D
�a��
os and D

�a��
act e� described above have the same general

form� Each of these families involves a particular quantity �overshoot and actuator
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Figure ��� A plot of achievable speci�cations in performance space� the re�

gion where the set of design speci�cations fD
�a��
os �D

�a��
act e� �Dstableg is achiev�

able is shaded� The speci�cation DX corresponds to a� � ��� and a� � ����
the original design speci�cations� The speci�cation DY represents a tighten�
ing of the overshoot speci�cation over DX to a� � �� and is an achievable
speci�cation� whereas the further tightening of the overshoot speci�cation
to a� � �� �DZ� is not achievable�

e�ort� respectively� for which a smaller value is �better�� or at least� a tighter
speci�cation� The parameter �a� and a�� respectively� is simply a limit on the
associated quantity�

This notion of �quantity� we make more precise as a functional on transfer
matrices� A functional is just a function that assigns to each nz � nw transfer
matrix H a real number �or possibly ���

De�nition ���� A functional � �on transfer matrices� is a function

� � H � R 
 f�g�

In contrast to a design speci�cation� which a transfer matrix either passes or fails�
a functional can be thought of as measuring some property or quality of the transfer
matrix� without judgment� Many functionals can be interpreted as measuring the
size of a transfer matrix or some of its entries �the subject of chapters � and ���
Allowing functionals to return the value 	� for some transfer matrices will be
convenient for us�
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Two functionals related to our example above are the overshoot�

�os�H�
�
� sup

t��

�
�


�

Z �

��

H���j��

j�
ej�t d� � �

�
�

and the RMS response at u due to the sensor and actuator noises�

�act e��H�
�
�

�
�


�

Z �

��

�
jH���j��j

�Sproc��� 	 jH���j��j
�Ssensor���

�
d�

����

�

The families of design speci�cations D
�a��
os and D

�a��
act e� can be expressed as the

functional inequality speci�cations�

D�a��
os � �os�H� � a��

and

D
�a��
act e� � �act e��H� � a��

More generally� we have�

De�nition ���� A functional inequality speci�cation is a speci�cation of the form

D
�a�
� � ��H� � a� �����

where � is a functional on transfer matrices and a is a constant�

Thus a can be interpreted as the maximum allowable value of the functional �� by
varying a� the expression ����� sweeps out a family of design speci�cations�

The family of speci�cations given by a functional inequality ����� is linearly

ordered� D
�a�
� is a stronger speci�cation than D

�b�
� if a � b� A functional can also

allow us to make quantitative comparisons of the speci�cations D
�a�
� and D

�b�
� � For

example D
�����
act e� is not merely a tighter speci�cation than D

�����
act e� � we can say that

it is twice as tight� at least as measured by the functional �act e� �
In the next two sections we describe two common methods for capturing the

notion of a �suitable� design using families of feasibility problems�

3.5 Multicriterion Optimization

In multicriterion optimization� we have a hard constraint Dhard and objective func�
tionals or criteria ��� � � � � �L� Each objective represents a soft goal in the design�
if the closed�loop transfer matrix H satis�es Dhard� it is generally desirable to have
each �i�H� small� although we have not �yet� set any priorities among the objective
functionals�
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We consider the family of design speci�cations� indexed by the parameters
a�� � � � � aL� given by

D�a������aL� � Dhard � D
�a��
��

� 	 	 	 � D
�aL�
�L

� ���
�

Dhard is the conjunction of our hard constraints�performance speci�cations about
which we are in�exible� Every speci�cation we consider� D�a������aL�� is stronger than
Dhard� The remaining speci�cations are functional inequalities for the criteria� The
basic goal of multicriterion optimization is to identify speci�cations D�a������aL� that
are on the boundary between achievable speci�cations and unachievable speci�ca�
tions�

De�nition ���� The speci�cation D�a������aL� is Pareto optimal or noninferior if
the speci�cation D�	a��


�	aL� is achievable whenever  a� � a�� � � � �  aL � aL� and is
unachievable whenever  a� � a�� � � � �  aL � aL� A closed�loop transfer matrix that
satis�es a Pareto optimal speci�cation is called a Pareto optimal transfer matrix or
design�

This is illustrated in �gure ��� for our particular example� The points on the
boundary between the achievable and unachievable speci�cations� shown with a
dashed line in �gure ���� are precisely the Pareto optimal speci�cations�
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q���
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Figure ��� A speci�cation is Pareto optimal if smaller limits in the func�
tional inequalities yield unachievable speci�cations and larger limits in the
functional inequalities yield achievable speci�cations� Such speci�cations
and on the boundary between achievable and unachievable speci�cations�
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Figure ��� The region of achievable speci�cations that are tighter than the
speci�cation marked DY is shaded� and similarly for DW� The speci�cations
DA and DB are Pareto optimal�

Let us illustrate this concept further� Figure ��
 is redrawn in �gure ��� with the
speci�cations DY and DW shown� along with two new speci�cations� DA and DB�
The region of achievable speci�cations that are tighter than the speci�cation DY is
shaded� and similarly for DW� To see the signi�cance of these regions� consider a
closed�loop transfer matrix H with ��os�H�� �act e��H�� lying in the shaded region
corresponding to DY� and a closed�loop transfer matrix  H with �os�  H� � ���
�act e��  H� � 
�� �i�e��  H just satis�es DY�� H is clearly a better design� in the
sense that it has less overshoot and it has a lower actuator e�ort than  H� DY is not
Pareto optimal precisely because there are designs that are better in both overshoot
and actuator e�ort� In general� an achievable but not Pareto optimal speci�cation
is one that can be strictly strengthened� The speci�cations DA and DB are Pareto
optimal�

Yet another interpretation of the Pareto optimal speci�cations is in terms of the
partial ordering of the design speci�cations� Figure ��� shows the partial ordering
of the design speci�cations from �gures ��
 and ���� together with the boundary
between achievable and unachievable speci�cations� For each linearly ordered chain
of speci�cations that contains a Pareto optimal speci�cation� all the weaker spec�
i�cations will be achievable and all the tighter speci�cations will be unachievable�
In terms of the partial ordering among speci�cations by strength� Pareto optimal
speci�cations are the minimal achievable speci�cations�

The boundary between achievable and unachievable speci�cations is called the
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Figure ��� A directed graph showing the ordering �in the sense of strength�
between the speci�cations in �gures 
�� and 
��� The boundary between
achievable and unachievable speci�cations is shown with a dashed line�

tradeo� curve �between the objectives �os and �act e��� We say that the speci�ca�
tion DA trades o� lower overshoot against higher actuator e�ort� as compared to
DB� More generally� with L speci�cations� we have a tradeo� surface �between the
functionals ��� � � � � �L� in performance space�

The idea of a tradeo� among various competing objectives is very important�
Figure ��� shows two di�erent possible regions of achievable speci�cations� In plot
�a�� the tradeo� curve is nearly straight� meaning that the overshoot and actuator
e�ort are tightly coupled� and that we must �give up on one to improve the other��
In plot �b�� the tradeo� curve is quite bent� which means that we can do very well
in terms of actuator e�ort and overshoot simultaneously� we give up only a little
bit in each objective to do well in both� In this case we might say that the two
functionals are nearly independent�

We note that Pareto optimal speci�cations themselves may be either achievable
or unachievable� If a Pareto optimal speci�cation is unachievable� however� there
are arbitrarily close speci�cations that are achievable� so� in practice� it is irrelevant
whether or not the Pareto optimal speci�cations can be achieved�

3.6 Optimal Controller Paradigm

In the classical optimization paradigm a family of design speci�cations indexed by
a single parameter � is considered�

D��� � Dhard � D
���
obj �����

where Dobj is the functional inequality speci�cation

D
���
obj � �obj�H� � ��

As in multicriterion optimization� Dhard is the conjunction of our hard constraints�
Unlike general multicriterion optimization� the family of speci�cations we consider�
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Figure ��� Two possible tradeo� curves� In �a�� the designer must trade
o� any reduction in actuator e�ort with an increase in the step response
overshoot� and vice versa� In �b�� it is possible to have low overshoot and
actuator e�ort� the speci�cation at the knee of the tradeo� curve is not
much worse than minimizing each separately�

D���� is linearly ordered� Any two speci�cations of this form can be compared� D���

is tighter than D��� if � � ��

We simply seek the tightest of these speci�cations that is achievable� more pre�
cisely� we seek the critical value �crit such that D��� is achievable for � � �crit and
unachievable for � � �crit� Of course� this is the unique Pareto optimal speci�ca�
tion if we consider this a multicriterion optimization problem with one criterion� A
transfer matrix Hopt that minimizes �obj�H�� that is� satis�es D��crit�� is called a
�obj�optimal design�

The classical optimization paradigm is more commonly expressed as

�crit � min
H satis�es Dhard

�obj�H�� �����

Hopt � argmin
H satis�es Dhard

�obj�H�� �����

where the notation argmin denotes a minimizer of �obj� i�e�� �crit � �obj�Hopt��

While the classical optimization paradigm is formally a special case of multi�
criterion optimization� it is used quite di�erently� The objective functional �obj is
usually not just one of many single soft goals� as is each objective functional in mul�
ticriterion optimization� rather it generally represents some sort of combination of
the many important functionals into one single functional� In the following sections
we survey some of the common methods used to combine functionals into the single
objective functional �obj�
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3.6.1 Weighted-Sum Objective

One common method is to add the various functionals� after they have been multi�
plied by weights� We form

�obj�H� � 	����H� 	 	 	 		 	L�L�H�� �����

where 	i are nonnegative numbers� called weights� which assign relative �values�
among the functionals �i� We refer to an objective functional of the form �����
as a weighted�sum objective� the vector 	 with components 	i is called the weight
vector� One method for choosing the weights is to scale each functional by a typical
or nominal value�

	i �
�

�nomi

�

where �nomi represents some nominal value of the functional �i� We can think of
these nominal values as including the �possibly di�erent� physical units of each
functional� so that each term in the sum ����� is dimensionless �and hence� they can
be sensibly added��

For our example the designer might choose

�nomos � �
� � 
��� �nomact e� � 
�
��

so that

	� �
�


��
� �
� 	� �

�


�
�
� 

� �����

and the objective functional is

�obj�H� � �
�os�H� 	 

�act e��H�� �����

In �gure ����a�� the lines of constant objective ����� in the performance plane
are shown� Along each of these constant objective lines� the tradeo� is exactly
increasing �or decreasing� �os by �
�� while decreasing �or increasing� �act e� by

�
�� The constant objective line �obj � ���� is tangent to the tradeo� curve� the
�obj�optimal speci�cation is the intersection of this line with the tradeo� curve�
This speci�cation is a� � �
����� a� � 
�
����

In �gure ����b�� the constant objective lines and the optimum speci�cation are
shown for the weights 	� � 

� 	� � �
� These weights put more emphasis on
the step response overshoot than do our original weights ������ the corresponding
optimum speci�cation is a� � ������ a� � 
�
��� which represents a tradeo� of
smaller overshoot for larger actuator e�ort over the optimum speci�cation for the
weights ������

In the general case� we consider hyperplanes in performance space with a normal
vector 	� Each such hyperplane consists of speci�cations that yield the same value
of the objective functional �obj given by ������ We can interpret the optimization
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Figure ��� Lines of constant objective functional �
��� are shown� together
with the optimizing design� In �a� the weights are �� � �� and �� � �� and
the smallest achievable objective functional value is ����� In �b� the weights
are �� � �� and �� � �� and the smallest achievable objective functional
value is ����� In both cases the smaller objective functional values shown
lie below the performance boundary and are therefore not achievable�

problem ����� geometrically in performance space as follows� �go as far as possible
in the direction �	 while staying in the region of achievable speci�cations�� More
precisely�

�crit � min
n
	Ta

��� D�a� is achievable
o
�

Figure ��� suggests another interpretation of the classical optimization problem
with objective ������ If the tradeo� boundary is smooth near the optimal speci��
cation aopt� then a �rst order approximation of the tradeo� surface is given by the
tangent hyperplane	

a
�� 	T �a� aopt� � 




� �����

We can use ����� to estimate nearby speci�cations on the tradeo� surface� For
example� the approximate optimal tradeo� between two functionals �i and �j �with
all other speci�cations �xed� is given by

	i
�i � �	j
�j �

where 
�i represents the change in the functional �i along the tradeo� surface� Since
the weights are positive� 
�i and 
�j have di�erent signs� meaning that we must
give up performance in one functional �e�g�� 
�i � 
� to obtain better performance
in the other �
�j � 
�� For small changes� the ratio of the two changes is nearly
the inverse ratio of the weights�

�

�i


�j
�

	j

	i
�
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Thus� when the classical optimization paradigm is applied to the weighted�sum
objective ������ the resulting speci�cation is on the tradeo� surface� and the local
tradeo�s between the di�erent functionals are given by the inverse ratios of the
corresponding weights�

The solution of each classical optimization problem with the weighted�sum ob�
jective ����� is a Pareto optimal speci�cation for the multicriterion optimization
problem with criteria ��� � � � � �L� However� there can be Pareto optimal speci�ca�
tions that are not optimal for any selection of weights in the classical optimization
problem with weighted�sum objective� Figure ��	 shows an example of this� We will
see in chapter � that in many cases the Pareto optimal speci�cations are exactly
the same as the speci�cations that are optimal for some selection of weights in the
classical optimization problem with weighted�sum objective�
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Figure ��� An example of a tradeo� curve with a Pareto optimal spec�
i�cation that is not optimal for any selection of weights in the classical
optimization problem with weighted�sum objective� It is optimal for the
weighted�max objective with weights �� � �� � ���

3.6.2 The Dual Function

An important function de�ned in terms of the weighted�sum objective is the dual

objective or dual function associated with the functionals ��� � � � � �L and the hard
constraint Dhard� It is de�ned as the mapping from the nonnegative weight vector
� � RL

� into the resulting minimum weighted�sum objective


����
�
� min f�����H� � � � �� �L�L�H� j H satis�es Dhard g � ���
��
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We will encounter the dual function in chapter � and chapters 
��
��

3.6.3 Weighted-Max Objective

Another approach� sometimes called minimax design� is to form the objective func�
tional as the maximum of the weighted functionals


�obj�H� � max f�����H�� � � � � �L�L�H�g � ���

�

where �i are nonnegative� We refer to ���

� as a weighted�max objective� As before�
the weights are meant to express the designer�s preferences among the functionals�

In �gure ��� the curves of constant weighted�max objective are shown for the
same two sets of weights as �gure ���� In �gure ����a� the weights are �� � 
��
�� � ��� the constant objective curve �obj � ���� touches the tradeo� curve at
a� � ����� a� � ����	� In �gure ����b� the weights are �� � ��� �� � 
�� the
constant objective curve �obj � ���� touches the tradeo� curve at a� � ��	���
a� � ������
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optimum
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Figure ��� Lines of constant minimax objective functional ������ are
shown� together with the optimizing design� In �a� the weights are �� � ��
and �� � �� and the smallest achievable objective functional value is �����
In �b� the weights are �� � �� and �� � �� and the smallest achievable
objective functional value is ���
� In both cases the smaller objective func�
tional values shown lie below the performance boundary and are therefore
not achievable�

This minimax approach always produces Pareto optimal speci�cations� and vice
versa
 every Pareto optimal speci�cation arises as the solution of the minimax
problem ���

� for some choice of weights� For example� the Pareto optimal spec�
i�cation shown in �gure ��	 is optimal for the minimax speci�cation with weights
�� � �� � 
��
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In one variation on the weighted�max objective ���

�� a constant o�set is sub�
tracted from each functional


�obj�H� � max f������H�� ���� � � � � �L��L�H�� �L�g � ���
��

3.7 General Design Procedures

In this section we describe some design procedures that have been suggested and
successfully used� We suppose that ��� � � � � �L are our criteria� From our discussion
of multicriterion optimization� we know that� among the achievable speci�cations�
the Pareto optimal ones are wise choices� It remains to choose one of these� i�e�� to
�search� the tradeo� surface for a suitable design� This is generally done interac�

tively� often by repeatedly adjusting the weights in a weighted�sum or weighted�max
objective and evaluating the resulting optimal design�

3.7.1 Initial Designs

We have already mentioned one sensible set of initial weights for either the weighted�
sum or weighted�max objectives
 each �i is the inverse of a nominal value or a
maximum value for the functional �i�

Several researchers have suggested the following method for determining reason�
able initial weights and o�sets for the o�set weighted�max objective ���
��� The
designer �rst decides what �good� and �bad� values would be for each objective� we
will use Gi and Bi to denote these values� One choice is to let Gi be the minimum
value of the functional �i alone� We then form the objective

�obj�H� � max

�
���H��G�

B� �G�

� � � � �
�L�H��GL

BL �GL

�
� ���
��

which is the maximum of the �normalized badness� of H
 �obj�H� � 
 means that
at least one criterion is near a bad value� �obj�H� � ��
 means that the worst
criterion is only 
�� of the way away from its good value� towards its bad value�

Another approach� called goal programming� starts with some �goal� values Gi

for the functionals ��� � � � � �L� The designer then determines the closest achievable
speci�cation to this goal speci�cation� using� e�g�� a weighted Euclidean distance in
performance space�

3.7.2 Design Iterations

Perhaps the most common method used to �nd a new and� one hopes� more suitable
design is informal adjustment ��tweaking�� of the weights in the weighted�sum or
weighted�max objective for the classical optimization problem� The designer picks
one criterion� say �ibad � whose current optimal value is deemed unacceptably large�
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and then increases the associated weight �ibad � One drawback of this method is
that if more than one weight is adjusted in a single iteration� it can be di�cult to
predict the resulting e�ect on the optimal values of the criteria�

Using the objective ���
��� a design iteration consists of a re�evaluation of what
good and bad values are for each objective� based on the current and previous
optimal values of the criteria� Similarly� in goal programming the designer can
change the goal speci�cation� or change the norm used to determine the closest
achievable speci�cation�

A procedure called the satis�cing tradeo� method uses the objective ���
��� In
this method� the Bi are called aspiration levels� so the goal is to �nd a design
with �obj�H� � 
� if possible� which means that our aspirations have been met
or exceeded� At each iteration� new aspiration levels are set according to various
heuristic rules� e�g�� they should be lower for those functionals that are currently
too large� and they must be larger for at least one functional that the designer feels
can be worsened a bit�
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Notes and References

The Feasibility Problem
In �ZA���� Zakian and Al�Naib formulate the design problem as a set of functional in�
equalities that must be satis�ed�

In the design of dynamical systems� such as control systems� electrical net�
works and other analogous systems� it is convenient to formulate the design
problem in terms of the inequalities

�i�p� � Ci� i � �� �� � � � �m

�p represents the design�� Some of the �i�p� are related to the dynamical
behavior of the system � � � and are called functionals�

If the Ci are �xed� then Zakian and Al�Naib�s formulation is what we have called the
feasibility problem� if� on the other hand� the Ci are treated as parameters that the designer
can vary� then the �wise� choices for the parameters are the Pareto optimal values�

The Classical Optimal Controller Paradigm
Wiener and Kolmogorov were the �rst to explicitly study the optimal controller paradigm�
Linear controller design before that time had consisted mostly of rules for synthesizing
controllers� e�g�� PID tuning rules �ZN��� or root locus methods �Eva���� or analysis
useful in designing controllers� e�g�� Bode �Bod���� In the ���
 book by Newton� Gould�
and Kaiser �NGK���� the optimal controller paradigm is called the �analytical design
procedure�� which they describe as �p�����

In place of a relatively simple statement of the allowable error� the analytical
design procedure employs a more or less elaborate performance index� The
objective of the performance index is to encompass in a single number a quality
measure for the performance of the system�

Multicriterion Optimization and Pareto Optimality
The notion of Pareto optimality is �rst explicitly described in Pareto�s �
�� treatise on
Economics �Par���� since then it has been extensively studied in the Econometrics litera�
ture� e�g�� Von Neumann and Morgenstern �NM��� and Debreu �Deb���� The latter book
contains many plots exactly like our plots of achievable speci�cations� tradeo� curves�
and so on� Two recent texts on multicriterion optimization are Sawaragi� Nakayama� and
Tanino �SNT��� and Luc �Luc���� �SNT��� covers many practical aspects of multicri�
terion optimization and decision making� �Luc��� is a clear and complete description of
vector optimization� covers topics such as convexity� quasiconvexity� and duality� and has
an extensive bibliography� Brayton and Spence �BS��	 ch�� has a general discussion of
multicriterion optimization similar to ours�

The article �Wie��� describes satis�cing decision making� gives a mathematically rigorous
formulation� and has a large set of references� The procedure for selecting weights and
o�sets in ������ of section ��
 is described in Nye and Tits �NT���� Fan et al� �FWK����
and also the book by Sawaragi� Nakayama� and Tanino �SNT����

An early reference in the control literature to multicriterion optimization is the arti�
cle �Zad��� by Zadeh� published right at the rise in prominence of the optimal controller
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paradigm� which was spurred by the work of Kalman and others on the linear quadratic
regulator �see chapter �� and �AM����� The recent book by Ng �Ng��� has a general
discussion of multicriterion optimization for control system design� concentrating on the
�quality of cooperation between the designer and his computer��

The Example Figures
The plots of achievable speci�cations in performance space for our standard example are
�ctitious �in fact� we never speci�ed the power spectral densities Sproc and Ssensor� so our
objective functionals are not even fully de�ned�� Later in this book we will see many real
tradeo� curves that relate to our standard example� see for example chapters �� and ���
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Chapter 4

Norms of Signals

Many of the goals of controller design can be expressed in terms of the size of
various signals� e�g�� tracking error signals should be made �small�� while the
actuator signals should not be �too large�� In this chapter we explore some of the
ways this notion of the size of a signal can be made precise� using norms� which
generalize the notion of Euclidean length�

4.1 Definition

There are many ways to describe the size of a signal or to express the idea that a
signal is small or large� For example� the fraction of time that the magnitude of a
signal exceeds some given threshold can serve as a measure of the size of the signal�
we could de�ne �small� to mean that the threshold is exceeded less than 
� of the
time� Among the many methods to measure the size of a signal� those that satisfy
certain geometric properties have proven especially useful� These measures of size
are called norms�

The geometric properties that norms satisfy are expressed in the framework of
a vector space� roughly speaking� we have a notion of how to add two signals� and
how to multiply or scale a signal by a scalar �see the Notes and References��

De�nition ���� Suppose V is a vector space and � 
 V � R� �f�g� � is a norm
on V if it satis�es

Nonnegativity
 ��v� � ��

Homogeneity
 for ��v� ��� ���v� � j�j��v��
Triangle inequality
 ��v � w� � ��v� � ��w��

for all � � R and v� w � V �

69
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We warn the reader that this de�nition di�ers slightly from the standard de�nition
of a norm� see the Notes and References at the end of this chapter�

We will generally use the notation

kvkx �
� ��v��

where x is some distinguishing mark or mnemonic for �� This notation emphasizes
that a norm is a generalization of the absolute value for real or complex numbers�
and the Euclidean length of a vector� Note that we allow norms to take on the
value ��� just as we allow our functionals on transfer matrices to do� We interpret
kvk �� as �v is in�nitely large� as measured by the norm k � k�

In the next few sections we survey some common norms used to measure the
size of signals� The veri�cation that these norms do in fact satisfy the required
properties is left as an exercise for the reader �alternatively� the reader can consult
the references��

4.2 Common Norms of Scalar Signals

4.2.1 Peak

One simple but strict interpretation of �the signal u is small� is that it is small at
all times� or equivalently� its maximum or peak absolute value is small� The peak

or L� norm of u is de�ned as

kuk� �
� sup

t��
ju�t�j�

An example of a signal u and its peak kuk� is shown in �gure ��
�
The peak norm of a signal is useful in specifying a strict limit on the absolute

value of a signal� e�g�� the output current of a power ampli�er� or the tracking error
in a disk drive head positioning system�

The peak norm of a signal depends entirely on the extreme or large values the
signal takes on� If the signal occasionally has large values� kuk� will be large� a
statistician would say kuk� depends on outliers or �rare events� in the signal u�
We shall soon see other norms that depend to a lesser extent on occasional large
signal values�

It is useful to imagine how various signal norms might be measured� A full wave
recti�er circuit that measures the peak of a voltage signal is shown in �gure ����

The peak norm can be used to describe a signal about which very little is known�
or willing to be assumed� other than some bound on its peak or worst case value�
Such a description is called an unknown�but�bounded model of a signal
 we assume
only kuk� �M � An example is quantization error� the di�erence between a signal
and its uniformly quantized value� This error can be modeled as unknown but
bounded by one�half of the quantization interval�
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Figure ��� A signal u and its peak norm kuk��
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Figure ��� With ideal diodes and an ideal capacitor the voltage on the
capacitor� Vc� tends to kuk� for t large�
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A variation on the peak norm is the eventual peak or steady�state peak


kukss� �
� lim sup

t��
ju�t�j � lim

T��
sup
t�T

ju�t�j�

The steady�state peak norm measures only persistent large excursions of the signal�
unlike the peak norm� it is una�ected by transients� i�e�� the addition of a signal
that decays to zero


ku� utransientkss� � kukss� if lim
t��

utransient�t� � ��

4.2.2 Root-Mean-Square

A measure of a signal that re�ects its eventual� average size is its root�mean�square

�RMS� value� de�ned by

kukrms
�
�

�
lim
T��




T

Z T

�

u�t�� dt

����

� ���
�

provided the limit exists �see the Notes and References�� This is a classical notion
of the size of a signal� widely used in many areas of engineering� An example of a
signal u and its RMS value kukrms is shown in �gure ����
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Figure ��� A signal u and its RMS value kukrms is shown in �a�� kuk�rms

is the average area under u�� as shown in �b��

In an early RMS ammeter� shown in �gure ���� the torque on the rotor is propor�
tional to the square of the current� its large rotational inertia� the torsional spring�
and some damping� make the rotor de�ection approximately proportional to the
mean�square current� kuk�rms�

Another useful conceptual model for kukrms is in terms of the average power dis�
sipated in a resistive load driven by a voltage u� as in �gure ���� The instantaneous
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u�t�

L�

L�

Figure ��� An early RMS ammeter consists of a stator L� and a rotor
L�� which is �tted with a needle and restoring spring� The de�ection of the
needle will be approximately proportional to kuk�rms� the square of the RMS
value of the input current u�

power dissipated in the load resistor is simply u�t���R� the �long term� temperature
rise of the large thermal mass above ambient temperature is proportional to the av�
erage power dissipation in the load� kuk�rms�R� This conceptual model shows that
the RMS measure is useful in specifying signal limits that are due to steady�state
thermal considerations such as maximum power dissipation and temperature rise�
For example� the current through a voice coil actuator might be limited by a max�
imum allowable steady�state temperature rise for the voice coil� this speci�cation
could be expressed as an RMS limit on the voice coil current�

u�t� R

����
large thermal mass
temperature T

ambient
temperature Tamb




�

Figure ��� If u varies much faster than the thermal time constant of the
mass� then the long term temperature rise of the mass is proportional to
the average power in u� i�e� T � Tamb � kuk�rms� where Tamb is the ambient
temperature� and T is the temperature of the mass�

Even if the RMS norm of a signal is small� the signal may occasionally have
large peaks� provided the peaks are not too frequent and do not contain too much
energy� In this sense� kukrms is less a�ected than kuk� by large but infrequent
values of the signal� We also note that the RMS norm is a steady�state measure of
a signal� the RMS value of a signal is not a�ected by any transient� In particular�
a signal with small RMS value can be very large for some initial time period�
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4.2.3 Average-Absolute Value

A measure that puts even less emphasis on large values of a signal �indeed� the
minimum emphasis possible to still be a norm� is its average�absolute value� de�ned
by

kukaa �
� lim

T��




T

Z T

�

ju�t�j dt� �����

provided the limit exists �see the Notes and References�� An example of a signal u
and its average�absolute norm kukaa is shown in �gure ���� kukaa can be measured
with the circuit shown in �gure ��� �c�f� the peak detector circuit in �gure �����
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Figure ��� A signal u and its average�absolute value kukaa is shown in �a��
kukaa is found by �nding the average area under juj� as shown in �b��
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Figure ��	 If u varies much faster than the time constant RC then Vc will
be nearly proportional to the average of the peak of the input voltage u� so
that Vc � kukaa� The resistor ro � R ensures that the output impedance
of the bridge is low at all times�

The average�absolute norm kukaa is useful in measuring average fuel or resource
use� when the fuel or resource consumption is proportional to ju�t�j� In contrast� the
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RMS norm kuk�rms is useful in measuring average power� which is often proportional
to u�t��� Examples of resource usage that might be measured with the average�
absolute norm are rocket fuel use� compressed air use� or power supply demand in
a conventional class B ampli�er� as shown in �gure ��	�

u�t�
R

Vcc

�Vcc

power
supply

qq




�

Figure ��� Idealized version of a class B power ampli�er� with no bias
circuitry shown� Provided the ampli�er does not clip� i�e�� kuk� � Vcc� the
average power supplied by the power supply is proportional to kukaa� the
average�absolute norm of u� the average power dissipated in the load R is
proportional to kuk�rms� the square of the RMS norm of u�

4.2.4 Norms of Stochastic Signals

For a signal modeled as a stationary stochastic process� the measure of its size most
often used is

kukrms
�
�
�
Eu�t��

����
� �����

Because the process is stationary� the expression in ����� does not depend on t� For
stochastic signals that approach stationarity as time goes on� we de�ne

kukrms
�
�
�
lim
t��

Eu�t��
����

�

If the signal u is ergodic� then its RMS norm can be computed either by �����
or ���
�
 with probability one the deterministic and stochastic RMS norms are
equal�

The RMS norm can be expressed in terms of the autocorrelation of u�

Ru�	�
�
� Eu�t�u�t� 	�� �����

or its power spectral density�

Su�
�
�
�

Z �

��

Ru�	�e
�j�� d	� �����
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as follows


kuk�rms � Ru��� �



��

Z �

��

Su�
� d
� �����

We can interpret the last integral as follows
 the average power in the signal is the
integral of the contribution at each frequency�

For stochastic signals� the analogs of the average�absolute or peak norm are less
often encountered than the RMS norm� For u stationary� we de�ne the average�
absolute norm as

kukaa �
� E ju�t�j�

which for ergodic signals agrees �with probability one� with our deterministic de��
nition of kukaa� We interpret kukaa as the expected or mean resource consumption�

The analog of the steady�state peak of u is the essential sup norm�

kukess sup
�
� inf fa j Prob�ju�t�j � a� � �g �

or equivalently� the smallest number a such that with probability one� ju�t�j � a�
Under some mild technical assumptions about u� this agrees with probability one
with the steady�state peak norm of u de�ned in section ����
�

4.2.5 Amplitude Distributions

We can think of the steady�state peak norm� RMS norm� and average�absolute
norm as di�ering in the relative weighting of large versus small signal values
 the
steady�state peak norm is entirely dependent on the large values of a signal� the
RMS norm is less dependent on the large values� and the average�absolute norm
less still�

This idea can be made precise by considering the notion of the amplitude distri�

bution Fu�a� of a signal u� which is� roughly speaking� the fraction of the time the
signal exceeds the limit a� or the probability that the signal exceeds the limit a at
some particular time�

We �rst consider stationary ergodic stochastic signals� The amplitude distribu�
tion is just the probability distribution of the absolute value of the signal


Fu�a�
�
� Prob�ju�t�j � a��

Since u is stationary� this expression does not depend on t�
We can also express Fu�a� in terms of the fraction of time the absolute value of

the signal exceeds the threshold a� Consider the time interval ��� T �� Over this time
interval� the signal u will spend some fraction of the total time T with ju�t�j � a�
Fu�a� is the limit of this fraction as T ��


Fu�a� � lim
T��

�ft j � � t � T� ju�t�j � ag
T

� �����
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where ���� denotes the total length �Lebesgue measure� of a subset of the real line�
These two ideas are depicted in �gure ���� The amplitude distribution of the signal
in �gure ��� is shown in �gure ��
��
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Figure ��� Example of calculating Fu����� for the signal u in �gure 	���
For T � ��� �ft j � � t � T� ju�t�j � ���g is the length of the shaded
intervals� and this length divided by T approximates Fu������

This last interpretation of the amplitude distribution in terms of the fraction of
time the signal exceeds any given threshold allows us to extend the notion of ampli�
tude distribution to some deterministic �non�stochastic� signals� For a deterministic
u� we de�ne Fu�a� to be the limit ������ provided this limit exists �it need not�� All
of the results of this section hold for a suitably restricted set of deterministic signals�
if we use this de�nition of amplitude distribution� There are many more technical
details in such a treatment of deterministic signals� however� so we continue under
the assumption that u is a stationary ergodic stochastic process�

Clearly Fu�a� � � for a 
 kukss�� and Fu�a� increases to one as a decreases
to zero� Informally� we think of ju�t�j as spending a large fraction of time where
the slope of Fu�a� is sharp� if Fu decreases approximately linearly� we say ju�t�j is
approximately uniformly distributed in amplitude� Figure ��

 shows two signals
and their amplitude distribution functions�

We can compute the steady�state peak� RMS� and average�absolute norms of u
directly from its amplitude distribution� We have already seen that

kukss� � supfa j Fu�a� 
 �g� ���	�

The steady�state peak of a signal is therefore the value of a at which the graph of
the amplitude distribution �rst becomes zero�
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Figure ���
 The amplitude distribution Fu of the signal u shown in �g�
ure 	��� together with the values kukaa� kukrms� and kuk��

From elementary probability theory we have

kukaa � E ju�t�j �
Z �

�

Fu�a� da� �����

Thus� the average�absolute norm of a signal is the total area under the amplitude
distribution function�

Since the amplitude distribution function of u� is Fu��a� � Fu�
p
a�� equa�

tion ����� yields

Eu�t�� �

Z �

�

Fu��a� da �

Z �

�

Fu�
p
a� da �

Z �

�

�aFu�a� da�

so that we can express the RMS norm as


kuk�rms �

Z �

�

�aFu�a� da� ���
��

Thus� the average power in the signal is the integral of its amplitude distribution
function times �a� Just as we interpret formula ����� as expressing the average
power in the signal as the integral of the contributions at all frequencies� we may
interpret ���
�� as expressing the average power in the signal as the integral of the
contributions from all possible signal amplitudes�

Comparison of the three formulas ���	�� ������ and ���
�� show that the three
norms simply put di�erent emphasis on large and small signal values
 the steady�
state peak norm puts all of its emphasis on large values� the RMS norm puts
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Figure ���� Examples of periodic signals are shown in �a� and �c�� Their
respective amplitude distribution functions are shown in �b� and �d�� The
signal in �a� spends most of its time near its peaks� the amplitude distribu�
tion falls rapidly near a � ku�k�� The signal in �c� spends most of its time
near �� the amplitude distribution falls rapidly near a � ��
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linearly weighted emphasis on signal amplitudes� and the average�absolute norm
puts uniform weight on all signal amplitudes�

4.2.6 L�: Square Root Total Energy

The previous sections dealt with the sizes of signals that persist� In this section
and the next we examine some norms appropriate for transient signals� which decay
to zero as time progresses� such signals have zero as their steady�state peak� RMS�
and average�absolute norms�

The total energy or L� norm of a signal is de�ned by

kuk� �
�

�Z �

�

u�t�� dt

	���

�

This norm is the appropriate analog of the RMS norm for decaying signals� i�e��
signals with �nite total energy as opposed to �nite steady�state power�

A useful conceptual model for the L� norm is shown in �gure ��
�� Here we
think of u as a driving voltage to a resistive load immersed in a thermal mass�
This thermal mass is isolated �adiabatic�� unlike the mass of �gure ���� which is
connected to the ambient temperature �a very large thermal mass� through a �nite
thermal resistance� The eventual temperature rise of the isolated thermal mass is
proportional to kuk���

u�t� R

PPPi large thermal mass
temperature T

PPPi good insulation




�

Figure ���� The long term temperature rise of the mass is proportional
to the total energy in u� i�e� T � Tinit � kuk��� where Tinit is the initial
temperature of the mass� and T is the �nal temperature of the mass�

As a practical example� suppose that u represents the current through a voice
coil drive during a step input in commanded position� and the thermal time constant
of the voice coil is longer than the time over which u is large� Then kuk�� is a measure
of the temperature rise in the voice coil during a step command input�

By Parseval�s theorem� the L� norm can be computed as an L� norm in the
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frequency domain


kuk� �
�




��

Z �

��

jU�j
�j� d

	���

� ���

�

4.2.7 L�: Total Fuel or Resource Consumption

The L� norm of a signal is de�ned as

kuk� �
�

Z �

�

ju�t�j dt�

Just as the L� norm measures the total energy in a signal� while the RMS norm
measures its average power� the L� norm of a signal can be thought of as measuring
a total resource consumption� while the average�absolute norm measures a steady�
state average resource consumption� For example� if u represents the compressed
gas �ow through a nozzle during a particular spacecraft maneuver� then kuk� is
proportional to the total gas consumed during the maneuver�

4.2.8 Frequency Domain Weights

The norms described above can be combined with an initial linear transformation
that serves to emphasize or de�emphasize certain aspects of a signal� Typically�
this initial transformation consists of passing the signal through an LTI �lter with
transfer function W � which we refer to as a frequency domain weight� as shown in
�gure ��
��

u W k � k kWuk

Figure ���� A frequency domain weighted norm is computed by passing
the signal u through an LTI �lterW � and then determining the �unweighted�
norm of this �ltered signal�

The idea is that the weighting �lter makes the norm more �sensitive� �i�e�� assign
larger values� to signals that have a large power spectral density at those frequencies
where jW �j
�j is large� This idea can be made precise for the W �weighted RMS
norm� which we will denote k � kW�rms� The power spectral density of the �ltered
signal Wu is

SWu�
� � Su�
�jW �j
�j��
so the RMS norm of Wu is

kukW�rms � kWukrms �

�



��

Z �

��

Su�
�jW �j
�j� d

	���

� ���
��
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Thus� the weight emphasizes the power spectral density of u where jW �j
�j is large�
meaning it contributes more to the integral� and de�emphasizes the power spectral
density of u where jW �j
�j is small� We note from ���
�� that the weighted norm
depends only on the magnitude of the weighting transfer function W � and not its
phase� This is not true of all weighted norms�

We can view the e�ect of the weight W as changing the relative importance of
di�erent frequencies in the total power integral ���
��� We can also interpret the
W �weighted RMS norm in terms of the average power conceptual model shown in
�gure ���� by changing the resistive load R to a frequency�dependent load� i�e�� a
more general passive admittance G�s�� The load admittance G is related to the
weight W by the spectral factorization

G�s� �G��s�
�

�W �s�W ��s�� ���
��

so that 	G�j
� � jW �j
�j�� Since the average power dissipated in G at a frequency

 is proportional to the real part �resistive component� of G�j
�� we see that the
total average power dissipated in G is given by the square of ���
��� or the square
of the W �weighted RMS norm of u�

For example� suppose that W �s� � �
 �
p
�s���
 � s�� which gives up to �dB

emphasis at frequencies above
p
�� The load admittance for this weight is G�s� �

�
��s���
� s�� which we realize as the parallel connection of a 
� resistor and the
series connection of a 
� resistor and a 
F capacitor� as shown in �gure ��
��

u�t� ��
��

�F

q

q




�

Figure ���� The average power dissipated in the termination admittance
G�s� � �� � �s���� � s� is kuk�W�rms� the square of the W �weighted RMS

norm of the driving voltage u� where W �s� � �� �
p
�s���� � s��

Frequency domain weights are used less often with the other norms� mostly
because their e�ect is harder to understand than the simple formula ���
��� One
common exception is the maximum slew rate� which is the peak norm used with the
weight W �s� � s� a di�erentiator


kukslew rate � k �uk�� ���
��

Maximum slew�rate speci�cations occur frequently� especially on actuator signals�
For example� an actuator signal may represent the position of a large valve� which
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is opened and closed by a motor that has a maximum speed� A graphical interpre�
tation of the slew�rate constraint kukslew rate � 
 is shown in �gure ��
��

The peak norm is sometimes used with higher order di�erentiators


kukacc �
�





d�udt�





�

�

kukjerk �
�





d�udt�





�

�

Weights that are successively higher order di�erentiators yield the amusing snap�
crackle� and pop norms�

u
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��

�

�

�

�

�

Figure ���� An interpretation of the maximum slew�rate speci�cation
k �uk � �� at every time t the graph of u must evolve within a cone� whose
sides have slopes of ��� Examples of these cones are shown for t � �� �� ��
u is slew�rate limited at t � � and t � �� since �u��� � � and �u��� � ���

4.2.9 Time Domain Weights

If the initial linear transformation consists of multiplying the signal by some given
function of time w�t�� we refer to w as a time domain weight� One example is the
ITAE �integral of time multiplied by absolute error� norm from classical control�
de�ned as

kukitae �
�

Z �

�

tju�t�j dt�
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This is simply the L� norm of u with the time domain weight w�t� � t� which serves
to emphasize the signal u at large times� and de�emphasize the signal at small times�

One commonly used family of time domain weights is the family of exponential
weightings� which have the form w�t� � exp�at�� If a is positive� such a weighting
exponentially emphasizes the signal at large times� This may be appropriate for
measuring the size of a decaying signal� Alternatively� we can think of a speci�cation
such as k uk� � M �where  u�t� � exp�at�u�t�� and a 
 �� as enforcing a rate of
decay in the signal u at least as fast as exp��at�� An example of a signal u and the
exponentially scaled signal u�t�e�t is shown in �gure ��
��
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Figure ���� A signal u is shown in �a�� The exponentially weighted L�

norm of u is the L� norm of the signal �u�t� � u�t�e�t� which is shown in
�b��

If a is negative� then the signal is exponentially de�emphasized at large times�
This might be useful to measure the size of a diverging or growing signal� where the
value of an unweighted norm is in�nite�

There is a simple frequency domain interpretation of the exponentially weighted
L� norms� If the a�exponentially weighted L� norm of a signal u is �nite then its
Laplace transform U�s� is analytic in the region fs j 	s 
 �ag� and in fact

k uk�� �
Z �

�

�exp�at�u�t��� dt �



��

Z �

��

jU��a� j
�j� d
 ���
��

�recall  u�t� � exp�at�u�t��� The only di�erence between ���
�� and ���

� is that the
integral in the a�exponentially weighted norm is shifted by the weight exponent a�
The frequency domain calculations of the L� norm and the a�exponentially weighted
L� norm for the signal in �gure ��
��a� are shown in �gure ��
��
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� � �
� � �

�b�

Figure ���	 An exponentially weighted L� norm can be calculated in the
frequency domain� Consider kuk���� � k�uk�� where �u�t� � e�tu�t� is shown
in �gure 	����b�� jU��� j��j� the magnitude of the Laplace transform of u�
is shown in �a� for � � �� As shown in �b�� kuk�� is proportional to the area
under jU�j��j�� and kuk����� is proportional to the area under jU���j��j��
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4.3 Common Norms of Vector Signals

The norms for scalar signals described in section ��� have natural extensions to
vector signals� We now suppose that u 
 R� � R

n� i�e�� u�t� � Rn for t � ��

4.3.1 Peak

The peak� or L� norm� of a vector signal is de�ned to be the maximum peak of
any of its components


kuk� �
� max

��i�n
kuik� � sup

t��
max
��i�n

jui�t�j

�note the di�erent uses of the notation k � k��� Thus� �kuk� is small� means
that every component of u is always small� A two�input peak detector is shown in
�gure ��
	�

u��t� u��t�

�

Vc

q

q

qqqq

q

q





��

Figure ���� With ideal diodes and an ideal capacitor� the voltage on the
capacitor� Vc� tends to kuk� for t large� where u � �u� u��

T is a vector of
two signals�

4.3.2 RMS

We de�ne the RMS norm of a vector signal as

kukrms
�
�

�
lim
T��




T

Z T

�

u�t�Tu�t� dt

����

� ���
��

provided this limit exists �see the Notes and References�� For an ergodic wide�sense
stationary stochastic signal this can be expressed

kuk�rms � E ku�t�k�� � TrRu��� � Tr



��

Z �

��

Su�
� d
�
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�For vector signals� the autocorrelation is de�ned by

Ru�	�
�
� Eu�t�u�t� 	�T

�c�f� �������� For such signals we have

kukrms �

�
nX
i��

kuik�rms

����

� ���
��

i�e�� kukrms is the square root of the sum of the mean�square values of the compo�
nents of u�

A conceptual model for the RMS value of a vector voltage signal is shown in
�gure ��
��

u��t�

u��t�

R

R

PPPi large thermal mass
temperature T

ambient
temperature Tamb







�

�

Figure ���� If u� and u� vary much faster than the thermal time constant
of the mass� then the long term temperature rise of the mass is proportional
to the average power in the vector signal u� i�e� T � Tamb � kuk�rms� where
Tamb is the ambient temperature� and T is the temperature of the mass�

4.3.3 Average-Absolute

The average�absolute norm of a vector signal is de�ned by

kukaa �
� lim sup

T��




T

Z T

�

nX
i��

jui�t�j dt�

This measures the average total resource consumption of all the components of u�
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4.3.4 L� and L� Norms

The L� and L� norms of a vector signal are de�ned by

kuk� �
�

�Z �

�

nX
i��

ui�t�
� dt

����

�

�
nX
i��

kuik��
����

�

kuk� �
�

Z �

�

nX
i��

jui�t�j dt �
nX
i��

kuik��

4.3.5 Scaling and Weighting

A very important concept associated with vector signal norms is scaling� which can
be thought of as assigning relative weights to the di�erent components of the vector
signal� For example� suppose that u� represents the output voltage and u� the
output current of a power ampli�er that voltage saturates �clips� at 

��V and
current limits at 
�A� One appropriate measure of the peak of this signal is

kukD�� � sup
t��

max

� ju��t�j

��

�
ju��t�j

�

�
� kDuk�

where

D �

�

�
�� �
� 
��

�
�

D is referred to as a scaling matrix� and kukD�� the D�scaled peak of u� We can
interpret kukD�� as the size of u� relative to ampli�er voltage or current overload

kukD�� � ��� indicates �dB of headroom before the ampli�er overloads� kukD�� �

�� indicates that the ampli�er will just saturate or current limit�

When the di�erent components of a vector signal u represent di�erent physical
quantities� as in the example above� the use of an appropriate scaling matrix is
crucial� It is useful to think of the scaling matrix as including the translation
factors among the various physical units of the components of u
 for our example
above�

D �

�

�
��V �

� 
��A

�
�

which properly renders kukD�� unitless�
A simple rule�of�thumb is to use scale factors that are inversely proportional to

what we might consider typical� nominal� or maximum acceptable values for that
component of the signal� The scaling in our example above is based on this principle�
using the maximum acceptable �overload� values� We have already encountered this
idea in sections ����
 and ������
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For average�absolute or L� norms� the scale factors can be interpreted as rel�
ative costs or values of the resources or commodities represented by the di�erent
components of the signal� For RMS or L� norms� the scale factors might represent
di�erent termination resistances in the conceptual model in �gure ��
��

Scaling is a very special form of weighting� since it consists of applying a linear
transformation to the signal before computing its norm� the linear transformation
is just multiplication by a diagonal matrix� Of course� it is also possible to multiply
the signal vector by a nondiagonal matrix before computing the norm� as in

kukA�� � kAuk��
where A is some matrix� One familiar example of this is the weighted L� norm�

kukA�� �
�Z �

�

u�t�TRu�t� dt

	���

�

where R � ATA� A is called a �constant� weight matrix� Constant weight matri�
ces can be used to emphasize some directions in R

n while de�emphasizing others�
whereas with �diagonal� scaling matrices we are restricted to directions aligned with
the axes� An example of this distinction is shown in �gure ���� for the constraint

kukA�� � kAuk� � 
�

When A is diagonal the signal u�t� is constrained to lie in a rectangle at each time
t� For a general matrix A� the signal u�t� is constrained to lie in a trapezoid�

More generally� we can preprocess the signal by a weighting transfer matrix W
that has n columns� as in

kukW�rms � kWukrms�

Often� W is square� i�e�� it has n rows as well� W might emphasize di�erent �direc�
tions� at di�erent frequencies�

4.4 Comparing Norms

We have seen many norms for signals� A natural question is
 how di�erent can they
be! Intuition suggests that since these di�erent norms each measure the �size� of
a signal� they should generally agree about whether a signal is �small� or �large��
This intuition is generally false� however�

For scalar signals we have

kuk� � kukrms � kukaa� ���
	�

for vector signals with n components we have the generalization

kuk� � 
p
n
kukrms � 


n
kukaa� ���
��
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Figure ���
 The constraint kukA�� � � requires that the signal u�t� lie
inside a trapezoid at all times t� Three weighting matrices A are shown�
together with the corresponding limits on the signal u�

The �rst inequality in ���
	� can be shown by replacing u� by the upper bound
kuk��


kuk�rms � lim
T��




T

Z T

�

u�t�� dt

� lim
T��




T

Z T

�

kuk�� dt

� kuk���
The second inequality in ���
	� follows from the Cauchy�Schwarz inequality


kukaa � lim
T��




T

Z T

�


ju�t�j dt

� lim
T��

�



T

Z T

�


� dt

�����



T

Z T

�

ju�t�j� dt
����

� kukrms�

It can also be shown that

kuk� � kukss� � kukrms � kukaa�
Another norm inequality� that gives a lower bound for kukaa� is
kuk�rms � kukaakuk�� ������
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This inequality can be understood by considering the power ampli�er shown in
�gure ��	� with a 
� load resistance� If we have Vcc � kuk�� then the ampli�er
does not saturate �clip�� and the voltage on the load is the input voltage� u�t�� The
average power delivered to the load is therefore kuk�rms� The average power supply
current is kukaa� so the average power delivered by the power supply is kukaaVcc�
which is kukaakuk�� Of course� the average power delivered to the load does not
exceed the average power drain on the power supply �the di�erence is dissipated in
the transistors�� so we have kuk�rms � kukaakuk�� which is �������

If the signal u is close to a switching signal� which means that it spends most of
its time near its peak value� then the values of the peak� steady�state peak� RMS
and average�absolute norms will be close� The crest factor of a signal gives an
indication of how much time a signal spends near its peak value� The crest factor
is de�ned as the ratio of the steady�state peak value to the RMS value of a signal


CF�u� �
kukss�
kukrms

�

Since kukss� � kukrms� the crest factor of a signal is at least 
� The crest factor is
a measure of how rapidly the amplitude distribution of the signal increases below
a � kukss�� see �gure ��

� The two signals in �gure ��

 have crest factors of 
�
�
and ����� respectively�

The crest factor can be combined with the upper bound in ������ to give a bound
on how much the RMS norm exceeds the average�absolute norm


kukrms

kukaa � CF�u�� ����
�
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Notes and References

For general references on vector spaces� norms of signals� or norms in general� see the
Notes and References for the next chapter� The text �WH��� by Wong and Hajek covers
stochastic signals�

The bold L in the symbols L�� L�� and L� stands for the mathematician H� Lebesgue�

Our Definition of Norm
Our de�nition 	�� di�ers from the standard de�nition of a norm in two ways� �rst� we
allow norms to take on the value ��� and second� we do not require kvk � � for nonzero
v �which is called the de�niteness property�� The standard term for what we call a norm
is seminorm� We will not need the �niteness or de�niteness properties of norms� in fact�
the only property of norms that we use in this book is convexity �see chapter ��� Our less
formal usage of the term norm allows us to give a less technical discussion of norms of
signals�

The mathematically sophisticated reader can form a standard norm from each of our
seminorms by �rst restricting it to the subspace of all signals for which kuk is �nite� and
then forming the quotient space� modulo the subspace of all signals for which kuk is zero�
This process is discussed in any mathematics text covering norms� e�g�� Kolmogorov and
Fomin �KF��� and Aubin �Aub���� As an example� k � kss� is a standard norm on the
vector space of equivalence classes of eventually bounded signals� where the equivalence
classes consist of signals that di�er by a transient� i�e�� signals that converge to each other
as t���

Some Mathematical Notes
There are signals for which the RMS value �	��� or average�absolute value �	��� are not de�
�ned because the limits in these expressions fail to exist� for example� u�t� � cos log���t��
These norms will always be de�ned if we substitute lim sup for lim in the de�nitions �	���
and �	���� With this generalized de�nition of the RMS and average�absolute norm� many
but not all of the properties discussed in this chapter still hold� For example� with lim sup
substituted for lim in the de�nition of the RMS norm of a vector signal �given in �	������
equation �	��
� need not hold�

We also note that the integral de�ning the power spectral density �equation �	���� need
not exist� In this case the process has a spectral measure�

Spectral Factorization of Weights
Youla �You�
� developed a spectral factorization analogous to �	���� for transfer matri�
ces� which yields an interpretation of the W �weighted RMS norm as the square root of the
total average power dissipated in a passive n�port admittance G�s�� In �And���� Ander�
son showed how this spectral factorization for transfer matrices can be computed using
state�space methods� by solving an algebraic Riccati equation� See also section 
�� of
Francis �Fra����



Chapter 5

Norms of Systems

A notion closely related to the size of a signal is the size of a transfer function or
LTI system� In this chapter we explore some of the ways this notion of size of a
system can be made precise�

5.1 Paradigms for System Norms

In this chapter we discuss methods of measuring the size of an LTI system with input
w� output z� and transfer matrix H� shown in �gure ��
� Many commonly used
norms for LTI systems can be interpreted as examples of several general methods
for measuring the size of a system in terms of the norms of its input and output
signals� In the next few subsections we describe these general methods�

w H z

Figure ��� A linear system with input w and output z�

We leave as an exercise for the reader the veri�cation that the norms we will
encounter in this chapter do satisfy the required properties �i�e�� de�nition ��
��

5.1.1 Norm of a Particular Response

The simplest general method for measuring the size of a system is to measure the
size of its response to a particular input signal wpart� e�g�� a unit impulse� a unit
step� or a stochastic signal with a particular power spectral density� If we use the
norm k �koutput to measure the size of the response� as shown in �gure ���� we de�ne

kHkpart �
� kHwpartkoutput�

93
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�It can be shown that this functional satis�es all of the properties required for a
norm� as our notation suggests��

wpart H k � koutput kzkoutput

Figure ��� The size of a transfer matrix H can be measured by applying
a particular signal wpart� and measuring the size of the output with some
suitable signal norm k � koutput�

5.1.2 Average Response Norm

A general method for measuring the size of a system� that directly takes into account
the response of the system to many input signals �and not just one particular input
signal�� is to measure the average size of the response of H to a speci�c probability

distribution of input signals� If k � koutput measures the size of the response� we
de�ne

kHkavg �
� E

w
kHwkoutput�

where Ew denotes expectation with respect to the distribution of input signals�

5.1.3 Worst Case Response Norm

Another general method for measuring the size of a system� that takes into account
the response of the system to many input signals� is to measure the worst case or
largest norm of the response of H to a speci�c collection of input signals� If k�koutput
measures the size of the response� we de�ne

kHkwc �
� sup

w�W
kHwkoutput�

where W denotes the collection of input signals�

5.1.4 Gain of a System

An important special case of a worst case norm is a gain� de�ned as the largest ratio
of the norm of the output to the norm of the input� If k � k is used to measure the
size of both the input and output signals� we de�ne

kHkgn �
� sup
kwk���

kHwk
kwk � ���
�
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The gain kHkgn is therefore the maximum factor by which the system can scale the
size �measured by the norm k � k� of a signal �owing through it� The gain can also
be expressed as a worst case response norm


kHkgn � sup
kwk��

kHwk�

If the transfer matrix H is not square� we cannot really use the same norm to
measure the input and output signals� since they have di�erent numbers of com�
ponents� In such cases we rely on our naming conventions to identify the �same�
norm to be used for the input and the output� For example� the RMS gain of a
� � � transfer matrix is de�ned by ���
�� where the norm in the numerator is the
RMS norm of a vector signal with � components� and the norm in the denominator
is the RMS norm of a vector signal with � components� It is also possible to de�ne
a more general gain with di�erent types of norms on the input and output� but we
will not use this generalization�

5.2 Norms of SISO LTI Systems

In this section we describe various norms for single�input� single�output �SISO�
systems�

5.2.1 Peak-Step

Our �rst example of a norm of a system is from the �rst paradigm
 the size of
its response to a particular input� The particular input signal is a unit step� we
measure the size of the response by its peak norm� We de�ne


kHkpk step
�
� ksk�

where s�t� denotes the step response ofH� we will refer to kHkpk step as the peak�step
norm of H� This would be an appropriate measure if� say� w represents a set�point
command in a control system �a signal that might be expected to change values
only occasionally�� and z represents some actuator signal� say� a motor voltage� In
this case� kHkpk step �multiplied by the maximum possible changes in the set�point
command� would represent a good approximation of the maximum motor voltage
�due to set�point changes� that might be encountered in the operation of the system�

5.2.2 RMS Response to a Particular Noise Input

A common measure of the size of a transfer function is the RMS value of its output
when its input is some particular stationary stochastic process� Suppose that the
particular input w has power spectral density Sw�
�� and H is stable� meaning that
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all of its poles have negative real part� The power spectral density of the output z
of H is then

Sz��� � Sw���jH�j��j��

and therefore

kzkrms �

�
�

��

Z �

��

jH�j��j�Sw��� d�

����

� �����

Thus we assign to H the norm

kHkrms�w
�
�

�
�

��

Z �

��

jH�j��j�Sw��� d�

����

� �����

The right�hand side of ����� has the same form as �	����
 with H substituted
for W � The interpretations are di�erent
 however� in �����
 w is some 
xed signal

and we are measuring the size of the LTI system H
 whereas in �	����
 W is a 
xed
weighting transfer function
 and we are measuring the size of the signal w�

5.2.3 H� Norm: RMS Response to White Noise

Consider the RMS response norm above� If Sw��� � � at those frequencies where
jH�j��j is signi
cant
 then we have

kHkrms�w �

�
�

��

Z �

��

jH�j��j� d�

����

�

It is convenient to think of such a signal as an approximation of a white noise signal

a 
ctitious input signal with Sw��� � � for all � �and thus
 in
nite power
 which
we conveniently overlook��

This important norm of a stable system is denoted

kHk�
�
�

�
�

��

Z �

��

jH�j��j� d�

����

�we assign kHk� �� for unstable H�
 and referred to as the H� norm of H�
Thus we have the important fact� the H� norm of a transfer function measures

the RMS response of its output when it is driven by a white noise excitation�

The H� norm can be given another interpretation� By the Parseval theorem


kHk� �

�Z �

�

h�t�� dt

����

� khk��

the L� norm of the impulse response h of the LTI system� Thus we can interpret
the H� norm of a system as the L� norm of its response to the particular input
signal �
 a unit impulse�
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5.2.4 A Worst Case Response Norm

Let us give an example of measuring the size of a transfer function using the worst
case response paradigm� Suppose that not much is known about w except that
kwk� � Mampl and k �wk� � Mslew
 i�e�
 w is bounded by Mampl and slew�rate
limited by Mslew� If the peak of the output z is critical
 a reasonable measure of
the size of H is

kHkwc
�
� sup fkHwk� j kwk� �Mampl� k �wk� �Mslewg �

In other words
 kHkwc is the worst case �largest� peak of the output
 over all inputs
bounded by Mampl and slew�rate limited by Mslew�

5.2.5 Peak Gain

The peak gain of an LTI system is

kHkpk gn
�
� sup
kwk� ���

kHwk�
kwk�

� ���	�

It can be shown that the peak gain of a transfer function is equal to the L� norm
of its impulse response�

kHkpk gn �

Z �

�

jh�t�j dt � khk�� �����

The peak gain of a transfer function is 
nite if and only if the transfer function is
stable�

To establish ����� we consider the input signal

w�t� �

�
sgn�h�T � t�� for � � t � T
� otherwise�

�����

which has kwk� � � �the sign function
 sgn���
 has the value � for positive argu�
ments
 and �� for negative arguments�� The output at time T is

z�T � �

Z T

�

w�T � t�h�t� dt

�

Z T

�

sgn�h�t��h�t� dt

�

Z T

�

jh�t�j dt�

which converges to khk� as T � �� So for large T �and H stable
 so that
kHkpk gn ���
 the signal ����� yields kzk��kwk� near khk�� it is also possible to
show that there is a signal w such that kzk��kwk� � khk��
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The peak gain of a system can also be expressed in terms of its step response s�

kHkpk gn � Tv�s��

where Tv�f�
 the total variation of a function f 
 is de
ned by

Tv�f�
�
� sup

��t������tN

N��X
i��

jf�ti�� f�ti���j �

Roughly speaking
 Tv�f� is the sum of all consecutive peak�to�valley di�erences in
f � this is shown in 
gure ����

s�
t�

t

� � � � � � � � � 	 ��
�

���

���

���

���

�

���

���

Figure ��� The peak gain of a transfer function is equal to the total
variation of its step response s� i�e�� the sum of all the consecutive peak�to�
valley di�erences �shown as arrows� of s�

It turns out that the peak gain of a SISO transfer function is also the average�
absolute gain�

kHkpk gn � kHkaa gn
�
� sup
kwkaa ���

kHwkaa
kwkaa

� �����

5.2.6 H� Norm: RMS Gain

An important norm of a transfer function is its RMS gain�

kHkrms gn
�
� sup
kwkrms ���

kHwkrms

kwkrms
� �����
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The RMS gain of a transfer function turns out to coincide with its L� gain


kHkrms gn � sup
kwk� ���

kHwk�
kwk�

� �����

and is equal to the maximum magnitude of the transfer function


kHkrms gn � sup
�
jH�j��j� ������

when H is stable� for unstableH we have kHkrms gn ��� For this reason
 the RMS
gain is sometimes called the maximum magnitude norm or the Chebychev norm of
a transfer function� We note that the right�hand side of ������ can be interpreted as
a worst case response norm of H� it is the largest steady�state peak of the response
of H to any unit amplitude sinusoid �w�t� � cos�t��

Equations ���������� show that four reasonable interpretations of �the transfer
function H is small� coincide�

� the RMS value of its output is always small compared to the RMS value of
its input�

� the total energy of its output is always small compared to the total energy of
its input�

� the transfer function H�j�� has a small magnitude at all frequencies�

� the steady�state peak of the response to a unit amplitude sinusoid of any
frequency is small�

The RMS gain of a transfer function H can be expressed as its maximum mag�
nitude in the right half of the complex plane�

kHkrms gn � kHk�
�
� sup
�s��

jH�s�j� ������

which is called the H� norm of H� �Note the very di�erent meaning from kwk�

the L� norm of a signal��

Let us establish ������ in the case where w is stochastic and H is stable� it is
not hard to establish it in general� Let Sw��� denote the power spectral density of
w� The power spectral density of the output z is then Sz��� � jH�j��j�Sw���
 and
therefore

kzk�rms �
�

��

Z �

��

Sz��� d�

�
�

��

Z �

��

jH�j��j�Sw��� d�

� sup
�
jH�j��j�

�

��

Z �

��

Sw��� d�

� kHk��kwk
�
rms�
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Thus we have for all w with nonzero RMS value

kHwkrms

kwkrms
� kHk��

which shows that kHkrms gn � kHk�� By concentrating the power spectral density
of w near a frequency �max at which jH�j�max�j � kHk�
 we have

kHwkrms

kwkrms
� kHk��

�Making this argument precise establishes ��������
We can contrast the H� and H� norms by considering the associated inequality

speci
cations� Equation ������ implies that the H� norm�bound speci
cation

kHk� �M ������

is equivalent to the speci
cation�

kHwkrms �M for all w with kwkrms � �� ������

In contrast
 the H� norm�bound speci
cation

kHk� �M ����	�

is equivalent to the speci
cation

kHwkrms �M for w a white noise� ������

The H� norm is often combined with a frequency domain weight�

kHkW�� � kWHk��

If the weighting transfer function W and its inverse W�� are both stable
 the
speci
cation kHkW�� � � can be expressed in the more classical form� H is stable
and

jH�j��j � jW �j��j�� for all ��

depicted in 
gure ��	�b��

5.2.7 ShiftedH� Norm

A useful generalization of the H� norm of a transfer function is its a�exponentially
weighted L� norm gain
 de
ned by

kHk��a
�
� sup
k �wk� ���

k�zk�
k �wk�

�
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�a�

jW
�j
�
�j
�d
B
�

�
� �� ���

���

���

���

�

��

��

��

�b�

�
�
jW
�j
�
�j
�d
B
�

�

allowed region
for jH�j��j

� �� ���
���

���

���

�

��

��

��

Figure ��� An example of a frequency domain weight W that enhances
frequencies above � � �� is shown in �a�� The speci	cation kWHk� � �
requires that the magnitude of H�j�� lie below the curve ��jW �j��j� as
shown in �b�� In particular� jH�j��j must be below �
�dB for � � �
�

where �w�t� � eatw�t�
 �z�t� � eatz�t�
 and z � Hw� It can be shown that

kHk��a � sup
�s��a

jH�s�j � kHak�� ������

where Ha�s� � H�s � a�� Ha is called the a�shifted transfer function formed from
H
 and the norm k � k��a is called the a�shifted H� norm of a transfer function�
This is shown in 
gure ����

From ������
 we see that the a�shifted H� norm of a transfer function is 
nite
if and only if the real parts of the poles of H are less than �a� For a � �
 then

the shifted H� norm can be used to measure the size of some unstable transfer
functions
 for example


k���s� ��k���� � �

�whereas k���s� ��k� ��
 meaning that its RMS gain is in
nite�� On the other
hand if a � �
 the a�shifted H� norm�bound speci
cation

kHk��a �M

�or even just kHk��a ��� guarantees that the poles of H lie to the left of the line
�s � �a in the complex plane�

We can interpret the shifted transfer function H�s�a� as follows� Given a block
diagram for H that consists of integrators �transfer function ��s�
 summing blocks

and scaling ampli
ers
 we replace each integrator with a transfer function ���s� a�
�called a �leaky integrator� when a � ��� The result is a block diagram of H�s�a�

as shown in 
gure ���� In circuit theory
 where H is some network function
 this is
called a uniform loading of H�
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�

�

jH�� � j��j

�a�

�

�

jH�� � j��j

� jH�� � j��j

� jH�� � j��j
kHk���

kHk���� �
� � �

�b�

Figure ��� The magnitude of a transfer function H is shown in �a�� The
L� gain of the system is the peak magnitude of H along the line s � j��
The exponentially weighted �a � ��� L� gain of the system is the peak
magnitude of H along the line s � � � j�� as shown in �b��
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�

s

�

s

a

r

�

�

�a� �b�

Figure ��� A realization of H�s � a� can be formed by taking each inte�
grator in a realization of H�s�� shown in �a�� and adding a feedback of a� as
shown in �b��

5.2.8 Hankel Norm

The Hankel norm of a transfer function is a measure of the e�ect of its past input on
its future output
 or the amount of energy that can be stored in and then retrieved
from the system� It is given by

kHkhankel

�
� sup

��Z �

T

z�t�� dt

����
�����
Z T

�

w�t�� dt � �� w�t� � �� t � T � �

�
�

We can think of w in this de
nition as an excitation that acts over the time period
� � t � T � the response or ring of the system after the excitation has stopped is
z�t� for t � T � An example of a past excitation and the resulting ring is shown in

gure ����

It is useful to think of the map from the excitation �w�t� for � � t � T � to
ring �z�t� for t � T � as consisting of two parts� 
rst
 the mapping of the excitation
into the state of the system at t � T � and then
 the mapping from the state of the
system at t � T �which �summarizes� the total e�ect on the future output that the
excitation can have� into the output for t � T � This interpretation will come up
again when we describe a method for computing kHkhankel�

5.2.9 Example 1: Comparing Two Transfer Functions

In this section we will consider various norms of the two transfer functions

H
	a

�� �s� �

�		��s� � ��	s� � ���	s� ���

s� � ��s� � ���s
 � ���s� � ����s� � ���	s� ���
� ������

H
	b

�� �s� �

����s� � ���s� � �����s� ��	�

s� � ����s� � ���s
 � ����s� � ����s� � �����s� ��	�
� ������

These transfer functions are the I�O transfer functions �T � achieved by the con�
trollers K	a
 and K	b
 in the standard plant example of section ��	� The step
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w
�t
�

z
�t
�

t� T

�

�

���
w�t� � � for t � T

���
z�t� rings for t � T

��� �� �� �� �� � � � � � ��

Figure ��� The Hankel norm of a transfer function is the largest possible
square root energy in the output z for t � T � given a unit�energy excitation
w that stops at t � T �

responses of H
	a

�� and H

	b

�� are shown in 
gure ��� and their frequency response

magnitudes in 
gure ���� The values of various norms of H
	a

�� and H

	b

�� are shown

in table ����
From the 
rst row of table ��� we see that the peak of the response of H

	a

�� to

a step input is about the same as H
	b

�� � Thus
 in the sense of peak step response


H
	a

�� is about the same size as H

	b

�� �

If H
	a

�� and H

	b

�� are driven by white noise
 the RMS value of the output of H

	a

��

is less than half that of H
	b

�� �second row�� Figure ���� shows an example of the

Norm H
	a

�� H

	b

�� 
gure

k � kpk step ���� ��	� ���
k � k� ���� ���� ����
k � kwc ���� ���� ����
k � kpk gn ���	 	��� ����
k � k� ��	� ���� ���
k � khankel ���� ���	 ����

Table ��� The values of six di�erent norms of H
�a�
�� and H

�b�
�� �
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�a�
�� �t�

��I
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�b�
�� �t�

HHY kH
�a�
�� kpk step � ���


���
kH

�b�
�� kpk step � ����

� � � � � � � � � 	 ��

����

�

���

���

���

���

�

���

���

���

Figure ��� The step responses of the transfer functions in ������ and �������

Note that kH
�a�
�� kpk step � ���
� and kH

�b�
�� kpk step � �����

jH
j

�

�

kH
�a�
�� k� � ����

���
kH

�b�
�� k� � ���


���
jH

�a�
�� �j��j

���
jH

�b�
�� �j��j

��� � �� ���
����

���

�

��

Figure ��	 The magnitudes of the transfer functions in ������ and �������

Note that kH
�a�
�� k� � ����� and kH

�b�
�� k� � ���
�
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outputs of H
�a�
�� and H

�b�
�� with a white noise excitation� Thus� in the sense of RMS

response to white noise� we can say that H
�a�
�� is about half the size of H

�b�
�� �

�a�

z
�t
�

t

���

kH
�a�
�� k� � ����

� � � � � ��
��

��

��

�

�

�

�

�b�

z
�t
�

t

�
��

kH
�b�
�� k� � ����

� � � � � ��
��

��

��

�

�

�

�

Figure ���� �a� shows a sample of the steady�state response of H
�a�
�� to a

white noise excitation	 together with the value kH
�a�
�� k� � ����
 �b� shows

a sample of the steady�state response of H
�b�
�� to a white noise excitation	

together with the value kH
�b�
�� k� � ����


From the third row� we see that the worst case response of H
�a�
�� to inputs

bounded and slew�rate limited by � is similar to that of H
�b�
�� � Amplitude and slew�

rate limited input waveforms that produce outputs with peak values close to these
worst case values are shown in �gure ����� Thus� in the sense of maximum peak

output in response to inputs bounded and slew limited by �� H
�a�
�� is about the same

size as H
�b�
�� �

From the fourth row� we see that the peak output ofH
�b�
�� with a worst case input

bounded by � is almost three times larger than H
�a�
�� � This is expected from the

step response total variation expression for the peak gain �see �gures ��� and ���	�
Input waveforms that produce outputs close to these worst case values are shown
in �gure ���
� Thus� in the sense of maximum peak output in response to inputs

bounded by �� H
�a�
�� is less than one third the size of H

�b�
�� �

From the �fth row� we see that the RMS gain of H
�b�
�� is more than twice as

large as the RMS gain of H
�a�
�� � This can be seen from �gure ���� input signals that

result in the largest possible ratio of RMS response to RMS input are sinusoids at

frequencies � 
 ��� �for H
�a�
�� 	 and � 
 ��� �for H

�b�
�� 	�

Finally� the worst case square root energy in the output of H
�a�
�� after its unit�

energy input signal is turned o� is about ��� lower than the worst case for H
�b�
��

�sixth row of table ���	� Thus� in the sense of square root energy gain from past

inputs to future outputs we can say that H
�a�
�� is about half the size of H

�b�
�� � Fig�
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Figure ���� �a� shows an input signal w with kwk� � � and k �wk� � �

that drives the output of H
�a�
�� close to kH

�a�
�� kwc � ����
 �b� shows an input

signal w with kwk� � � and k �wk� � � that drives the output of H
�b�
�� close

to kH
�b�
�� kwc � ���



�a�

t

���
w�t����

z�t�

� � � � � ��

��

��

�

�

�

�b�

t

�
���

w�t�

���
z�t�

� � � � � ��

��

��

�

�

�

Figure ���� �a� shows an input signal w with kwk� � �	 together with

the output z produced when H
�a�
�� is driven by w� z���� � ���� is very close

to kH
�a�
�� kpk gn
 �b� shows an input signal w with kwk� � �	 together with

the output z produced when H
�b�
�� is driven by w� z���� � ��
� is close to

kH
�b�
�� kpk gn � ����
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ure ���� shows unit�energy excitations for t � � that produce square root output

energies for t � � close to the Hankel norms of H
�a�
�� and H

�b�
�� �

�a�

t

��R
w�t� ���

z�t�

� � � � � ��
��

��

�

�

�

�

�b�

t

���
w�t�

��R
z�t�

� � � � � ��
��

��

�

�

�

�

Figure ���� �a� shows a unit�energy input signal w that is zero for t � �	

together with the output z when H
�a�
�� is driven by w
 The square root

energy in z for t � � is close to kH
�a�
�� khankel � ����
 �b� shows a unit�

energy input signal w that is zero for t � �	 together with the output z

when H
�b�
�� is driven by w
 The square root energy in z for t � � is close to

kH
�b�
�� khankel � ����


5.2.10 Example 2: the Gain of an Amplifier Circuit

Consider the band pass �lter circuit shown in �gure ����� We will assume that the
opamp saturates at ���V� The input of the circuit �which is produced by another
opamp	 is no larger than ���V �i�e�� kwk� � ��	� We ask the question� can this
�lter saturate�

Assuming the opamp does not saturate� the transfer function from w to z is

H�s	 

�
s����

�s���� � �	�
�����	

The maximum magnitude of this transfer function is ��� �kHk� 
 �	� so� provided
the opamp does not saturate� the RMS value of the �lter output does not exceed
the RMS value of the �lter input� It is tempting to conclude that the opamp in the
�lter will not saturate�

This conclusion is wrong� however� The peak gain of the transfer function H
is kHkpk gn 
 ����� so there are inputs bounded by� say� ���V that will drive the
opamp into saturation� Figure ���� gives an example of such an input signal� and
the corresponding output that would be produced if the opamp did not saturate�
Since it exceeds ��V� the real �lter will saturate with this input signal�
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w

z

��K��nF ��K

�nF

�

�
q

qq

q

Figure ���� A bandpass �lter circuit
 The ampli�er has very large open�
loop gain
 The output clips at ���V 	 and the input lies between ���V 

When the circuit is operating linearly the transfer function from w to z is
given by ��
���


V

t �ms	

��I
w�t�

��I
z�t�

� ��� ��� ��� ��� � ��� ��� ���

���

���

��

�

�

��

��

Figure ���� If the circuit shown in �gure �
�� did not saturate	 the input
w shown would produce the output z
 Even though kwk� � ��V	 we have
kzk� � ����V
 Thus the input w will drive the real circuit in �gure �
��
into saturation
 Of course	 kzkrms � kwkrms	 since kHkrms gn � �
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5.3 Norms of MIMO LTI Systems

Some of the common norms for multiple�input� multiple�output �MIMO	 LTI sys�
tems can be expressed in terms of the singular values of the nz�nw transfer matrix
H� which� roughly speaking� give information analogous to the magnitude of a SISO
transfer function� The singular values of a matrix M � Cnz�nw are de�ned by

�i�M	



 ��i�M

�M		��� � i 
 �� � � � �minfnz� nwg� ���
�	

where �i��	 denotes the ith largest eigenvalue� The largest singular value �i�e�� ��	
is also denoted �max� A plot of �i�H�j�		 is called a singular value plot� and is
analogous to a Bode magnitude plot of a SISO transfer function �an example is
given in �gure ����	�

5.3.1 RMS Response to a Particular Noise Input

Suppose H is stable �i�e�� each of its entries is stable	� and Sw is the power spectral
density matrix of w� Then

kHkrms�w 


�
Tr

�


�

Z �

��

H�j�	Sw�j�	H�j�	� d�

����

�

5.3.2 H� Norm: RMS Response to White Noise

If Sw��	 � I for those frequencies for which H�j�	 is signi�cant� then this norm is
approximately the H� norm of a MIMO system�

kHkrms�w � kHk� 




�
Tr

�


�

Z �

��

H�j�	H�j�	� d�

����

� ���
�	

The H� norm of H is therefore the RMS value of the output when the inputs are
driven by independent white noises�

By Parseval�s theorem� the H� norm can be expressed as

kHk� 

�
Tr

Z �

�

h�t	h�t	T dt

����




�
nzX
i��

nwX
k��

kHikk��
����

�

where h is the impulse matrix of H� Thus� the H� norm of a transfer matrix H is
the square root of the sum of the squares of the H� norms of its entries�
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TheH� norm can also be expressed in terms of the singular values of the transfer
matrix H�

kHk� 

�

�


�

Z �

��

nX
i��

�i�H�j�		� d�

����

� ���

	

where n 
 minfnz� nwg� Thus� the square of the H� norm is the total area under
the squared singular value plots� on a linear frequency scale� This is shown in
�gure �����

�

���

��� � ��� � ���

� � �� �� �� �� �� �� ��
�

��

��

��

��

��

��

��

��

Figure ���� For a MIMO transfer matrix	 kHk�� is proportional to the area
under a plot of the sum of the squares of the singular values of H �shown
here for minfnz� nwg � ��


5.3.3 Peak Gain

The peak gain of a MIMO system is

kHkpk gn



 sup
kwk� ���

kHwk�
kwk� 
 max

��i�nz

Z �

�

nwX
j��

jhij�t	j dt� ���
�	

For MIMO systems� the peak gain is not the same as the average�absolute gain
�c�f� ����		� The average�absolute gain is

kHkaa gn



 sup
kwkaa ���

kHwkaa
kwkaa 
 kHT kpk gn�

the peak gain of the LTI system whose transfer matrix is the transpose of H�
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5.3.4 RMS Gain

The RMS gain of a MIMO system is important for several reasons� one being that it
is readily computed from state�space equations� The RMS gain of a MIMO transfer
matrix is

kHkrms gn 
 kHk� 


 sup
�s��

�max�H�s		�

the H� norm of a transfer matrix �c�f� �����	� the analogous de�nition for transfer
functions	� Thus� kHk� � � if and only if the transfer matrix H is stable� For
stable H� we can express the H� norm as the maximum of the maximum singular
value over all frequencies�

kHk� 
 sup
�
�max�H�j�		�

as shown in �gure ����� Note that the other singular values do not a�ect kHk��

�

��I
kHk�

���

��

���

��

���

��

��� � �� ���
�

�

�

�

�

�

�

�

�

	

��

Figure ���� The H� norm of a stable transfer matrix H is the maxi�
mum over frequency of the maximum singular value	 ��
 The other singular
values	 ��� 
 
 
 � �n	 do not a�ect the H� norm


5.3.5 Entropy of a System

In this section we describe a measure of the size of a MIMO system� which is not

a norm� but is closely related to the H� norm and the H� norm� For � 	 � we
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de�ne the ��entropy of the system with transfer matrix H as

I��H	





��
� � ��


�

Z �

��

log det
�
I � ���H�j�	H�j�	�

�
d� if kHk� � �

� if kHk� � �

�c�f� ���
�		� The ��entropy can also be expressed in terms of the singular values as

I��H	 


�	�
	�

�


�

Z �

��

nX
i��

��� log ��� ��i�H�j�		��	�
�
d� if kHk� � �

� if kHk� � �

�c�f� ���

		� This last formula allows us to interpret the ��entropy ofH as a measure
of its size� that puts a weight ��� log�� � ����	�	 on a singular value �� whereas
the H� norm uses the weight ��� This weight function is shown in �gure ����� with
�� shown for comparison�

�

��R
��� log

�
�� ������

�
��I

��

� �
�

�
�

Figure ���	 The ��entropy of H is a measure of its size that puts a weight
��� log�� � ������� on a singular value �	 whereas the H� norm uses the
weight ��


Since these two weight functions are close when �i is small compared to �� we
see that

lim
���

q
I��H	 
 kHk�� ���
�	

From �gure ���� we can see thatq
I��H	 � kHk�� ���
�	
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i�e�� the square root of the ��entropy of a transfer matrix is no smaller than its H�

norm� We also have the more complicated converse inequalityq
I��H	 � �




p
� log��� 
�	 kHk�� ���
�	

where 
 
 kHk��� � �� Thus� the relative increase in the square root of the
��entropy over the H� norm can be bounded by an expression that only depends
on how close the H� norm is to the critical value �� For example� if kHk� � ��

�
 � ���	� we have kHk� �

p
I��H	 � �����kHk�� i�e�� if � exceeds kHk� by �dB

or more� then the square root of the ��entropy and kHk� cannot di�er by more
than about ���dB� Thus� the H� norm of a transfer matrix must be near � for the
square root of the ��entropy to di�er much from the H� norm�

An important property of the entropy is that it is readily computed using state�
space methods� as we will see in section ������

An Interpretation of the Entropy

Recall that the square of the H� norm of a transfer function H is the power of
its output when it is driven by a white noise� For the case of scalar �i�e�� transfer
function	H� we can give a similar interpretation of the ��entropy ofH as the average
power of its output when it is driven by a white noise� and a certain random feedback
is connected around it� as shown in �gure �����

H

�

w zr

�

�
q

Figure ���
 The ��entropy of a transfer function H is the average power of
its output z when it is driven by a white noise w and a random feedback �
is connected around it
 The values of the random feedback transfer function
� are independent at di�erent frequencies	 and uniformly distributed on a
disk of radius ��� centered at the origin in C


The transfer function from w to z in �gure ����� with a particular feedback
transfer function � connected� is H�����H	� so the power of the output signal is



 H

���H






�

�

�

We now assume that � is random� with ��j�	 and ��j�	 independent for � 	
 ��
and each ��j�	 uniformly distributed on the disk of radius ��� in the complex
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plane� Then we have

E







 H

���H






�

�


 I��H	� ���
�	

where E denotes expectation over the random feedback transfer functions ��

Some feedback transfer functions decrease the power in the output� while other
feedback transfer functions increase it� the inequality ���
�	 shows that on average�
the power in the output is increased by the feedback� The limit ���
�	 shows that
if the feedback is small� then it has little e�ect on the output power �indeed� ���
�	
shows that the average e�ect of the feedback on the output power is small unless
the H� norm of the feedback is close to the inverse of the H� norm of H	�

5.3.6 Scaling and Weights

The discussion of section ����� concerning scalings and weights for norms of vector
signals has important implications for norms of MIMO systems� gains especially are
a�ected by the scaling used to measure the input and output vector signals� For
example� let us consider the e�ect of scaling on the RMS gain of a �square	 MIMO
system� Let D be a scaling matrix �i�e�� diagonal	� The D�scaled RMS value of Hw
is kHwkD�rms 
 kDHwkrms� the D�scaled RMS value of w is kwkD�rms 
 kDwkrms�
Thus� the D�scaled RMS gain of H is

sup
kwkrms ���

kDHwkrms

kDwkrms

 sup
k 
wkrms ���

kDHD�� �wkrms

k �wkrms


 kDHD��k��

the H� norm of the diagonally pre� and post�scaled transfer matrix�

More general transfer matrix weights can be applied� e�g�� kWpostHWprek�

5.4 Important Properties of Gains

5.4.1 Gain of a Cascade Connection

An important property of gains is that the gain of the product of two transfer
matrices can be bounded in terms of the gains of the individual transfer matrices�
if k � kgn denotes any gain� then

kH�H�kgn � kH�kgnkH�kgn� ���
�	

This inequality is easily established� it can be seen from �gure ��
�� The prop�
erty ���
�	 does not generally hold for norms of LTI systems that are not gains� For
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example�

H� 

�s

s� � s� �

H� 

�s

s� � ���s� 


have kH�kpk step 
 ���� and kH�kpk step 
 ����� so that kH�kpk stepkH�kpk step 

����� but kH�H�kpk step 
 
��� 	 �����

On the other hand� kH�k� 
 �� kH�k� 
 �� and kH�H�k� 
 ���� � ��� since
the H� norm is the RMS gain�

w zH� H�

Figure ���� The gain of two cascaded transfer matrices is no larger
than the product of the gains of the transfer matrices	 i�e�� kH�H�kgn �
kH�kgnkH�kgn


5.4.2 Gain of a Feedback Connection

H�

H�

w zr

�

�
q

Figure ���� Two systems connected in a feedback loop


Consider the feedback connection shown in �gure ��
�� Assuming that this feedback
connection is well�posed� meaning that det�I � H�H�	 is not identically zero� the
transfer matrix from w to z is

G 
 �I �H�H�	
��H� 
 H��I �H�H�	

��� ���
�	

A fact that we will need in chapter �� is that� provided the product of the gains
of the two transfer matrices is less than one� the gain of G can be bounded� More
precisely� if

kH�kgnkH�kgn � � �����	

holds� then the feedback connection is well�posed and we have

kGkgn � kH�kgn
�� kH�kgnkH�kgn �����	
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�note the similarity to ���
�		�

The condition �����	 is called the �small gain� condition� since� roughly speaking�
it limits the gain around the loop in �gure ��
� to less than one� For this reason�
the result above is sometimes called the small gain theorem�

The small gain theorem can be used to establish stability of a feedback connec�
tion� if the gain k � kgn is such that kHkgn �� implies that H is stable� The RMS
gain� for example� has this property� the small gain condition kH�k�kH�k� � �
implies that the transfer matrix G is stable� that is� all of its poles have negative
real part� Similarly� if the gain k � kgn is the a�shifted H� norm� then the small
gain condition kH�k��akH�k��a � � implies that the poles of G have real parts less
than �a�

The small gain theorem is easily shown� Suppose that the small gain condi�
tion �����	 holds� The feedback connection of �gure ��
� means

z 
 H��w �H�z	 
 H�w �H�H�z�

Using the triangle inequality�

kzk � kH�wk� kH�H�zk�

where k � k is the norm used for all signals� Using the de�nition of gain and the
property ���
�	� we have

kzk � kH�kgnkwk� kH�H�kgnkzk � kH�kgnkwk� kH�kgnkH�kgnkzk�

so that

kzk ��� kH�kgnkH�kgn	 � kH�kgnkwk�

Using the small gain condition� we have

kzk � kH�kgn
�� kH�kgnkH�kgn kwk� ����
	

Since ����
	 holds for all signals w� �����	 follows�

5.5 Comparing Norms

The intuition that di�erent norms for LTI systems should generally agree about
which transfer matrices are �small� or �large� is false� There are� however� some
general inequalities that the norms we have seen must satisfy�
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5.5.1 Some General Inequalities

For convenience we will consider norms of SISO systems� i�e�� norms of transfer
functions�

Since k � kpk step and k � k� are each worst case peak norms over input signal
sets that have peaks no greater than one �a unit step in the �rst case� and unit
amplitude sinusoids in the second	� it follows that these norms will be no larger
than the peak gain of the system�

kHkpk gn � kHk��
kHkpk gn � kHkpk step�

From the de�nition of the Hankel norm� we can see that it cannot exceed the L�
gain� which we saw is the H� norm� so we have

kHkhankel � kHk��
It is possible for a system to have a small RMS gain� but a large peak gain�

However� if H has n poles then the peak gain of H can be bounded in terms of the
Hankel norm� and therefore� the RMS gain�

kHk� � kHkpk gn � �
n� �	kHkhankel � �
n� �	kHk�� �����	

This means that for low order systems� at least� the peak gain� RMS gain� and
Hankel norm cannot di�er too much�

5.5.2 Approximating Norms: an Example

Consider the worst case norm described in section ������ with the amplitude bound
and slew�rate limit each equal to one�

kHkwc 
 sup fkHwk� j kwk� � �� k �wk� � �g �
Roughly speaking� the bound and slew�rate limit establish a bandwidth limit of
about one for the input signal w� We might therefore suspect that we can approxi�
mate kHkwc by a weighted peak gain� where the weight is some appropriate lowpass
�lter with a bandwidth near one�

kHkwc � kHWkpk gn�

We will show that this intuition is correct� for W �s	 
 ���
s� �	� we have

kHWkpk gn � kHkwc � �kHWkpk gn �����	

for all transfer functions H� Thus�
p
� kHWkpk gn approximates kHkwc to within

����dB�
To establish �����	� suppose that w� is a signal with

kw�k� 
 �� kHWw�k� 
 kHWkpk gn
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�such a w� can be shown to exist	� Let w� 
Ww�� Then we have

kw�k� � kWkpk gn 
 ��

and

k �w�k� 






 s


s� �
w�






�

�




 s


s� �






pk gn


 ��

Therefore w� satis�es the amplitude limit kwk� � � and slew�rate limit k �w�k� � ��
so we must have kHw�k� � kHkwc� Since kHw�k� 
 kHWkpk gn� this means that

kHWkpk gn � kHkwc�
We now establish the right�hand inequality in �����	� Consider w� such that

kw�k� � �� k �w�k� � �� kHw�k� 
 kHkwc
�such a w� can be shown to exist	� De�ne w� by

w� 
 
 �w� � w� 
W��w��

Then kw�k� � 
k �w�k� � kw�k� 
 �� and kHWw�k� 
 kHw�k� 
 kHkwc�
Hence

kHWkpk gn � kHWw�k�
kw�k� 


kHkwc
�

�

which establishes the right�hand inequality in �����	�
This example illustrates an interesting tradeo� in the selection of a norm� While

kHkwc may better characterize the �size� of H in a given situation� the approxima�
tion kHWkpk gn �or even kHWk�� see the previous section	 may be easier to work
with� e�g�� compute� If kwk� � � and k �wk� � � is only an approximate model of
possible w�s� and the speci�cation kzk� � 
 need only hold within a factor of two
or so� then

kHWkpk gn �
p
�


would be an appropriate speci�cation�

5.6 State-Space Methods for Computing Norms

The H�� Hankel� and H� norms� and the ��entropy of a transfer matrix are readily
computed from a state�space realization� methods for computing some of the other
norms we have seen are described in the Notes and References� In this section we
assume that

�x 
 Ax�Bw� z 
 Cx
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is a minimal realization of the stable transfer matrix H� i�e��

H�s	 
 C�sI �A	��B�

The references cited at the end of this chapter give the generalization of the H�
norm computation method to the case with a feed�through term �z 
 Cx�Dw	�

5.6.1 Computing theH� Norm

Substituting the impulse matrix h�t	 
 CeAtB of H into

kHk�� 
 Tr
�Z �

�

h�t	Th�t	 dt

�

we have

kHk�� 
 Tr
�
BT

Z �

�

eA
T tCTCeAt dt B

�

 Tr

�
BTWobsB

�
� �����	

where

Wobs





Z �

�

eA
T tCTCeAt dt

is the observability Gramian of the realization� which can be computed by solving
the Lyapunov equation

ATWobs �WobsA� CTC 
 � �����	

�see the Notes and References	�
The observability Gramian determines the total energy in the system output�

starting from a given initial state� with no input�

x��	TWobsx��	 


Z �

�

z�t	T z�t	 dt�

where �x 
 Ax� z 
 Cx�
Since Tr�RS	 
 Tr�SR	� the above derivation can be repeated to give an alter�

nate formula

kHk� 

�
Tr
�
CWcontrC

T
�����

� �����	

where

Wcontr





Z �

�

eAtBBT eA
T t dt
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is the controllability Gramian� which can be found by solving the Lyapunov equation

AWcontr �WcontrA
T �BBT 
 �� �����	

The controllability Gramian determines which points in state�space can be reached
using an input with total energy one�

�x 
 Ax�Bw� x��	 
 �� x�T 	 
 xd�
R T
�
w�t	Tw�t	 dt � ��

for some T and w

�

xTdW
��
contrxd � ��

Thus� the points in state�space that can be reached using an excitation with total
energy one is given by an ellipsoid determined by Wcontr� �See chapter �� for more
discussion of ellipsoids�	

5.6.2 Computing the Hankel Norm

The Hankel norm is readily computed from the controllability and observability
Gramians via

kHkhankel 

�
�max�W

���
contrWobsW

���
contr	

����

 ��max�WobsWcontr		

���
� �����	

where �max��	 denotes the largest eigenvalue� Roughly speaking� the GramianWobs

measures the energy that can be �retrieved� in the output from the system state�
and Wcontr measures the amount of energy that can be �stored� in the system state
using an excitation with a given energy� These are the two �parts� of the mapping
from the excitation to the resulting ring that we mentioned in section ��
��� �����	
shows how the Hankel norm depends on the �sizes� of these two parts�

5.6.3 Computing theH� Norm

There is a simple method for determining whether the inequality speci�cation
kHk� � � is satis�ed� Given � 	 � we de�ne the matrix

M� 




A ���BBT

����CTC �AT

�
� �����	

Then we have

kHk� � � 
�M� has no imaginary eigenvalues� �����	

Hence we can check whether the speci�cation kHk � � is satis�ed by forming
M� and computing its eigenvalues� The equivalence �����	 can be used to devise
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an algorithm that computes kHk� with guaranteed accuracy� by trying di�erent
values of �� see the Notes and References at the end of this chapter�

The result �����	 can be understood as follows� kHk� � � is true if and only if
for all � � R� ��I �H�j�	�H�j�	 is invertible� or equivalently� the transfer matrix

G�s	 

�
I � ���H��s	TH�s	

���
has no j� axis poles� We can derive a realization of G as follows� A realization of
H��s	T �which is the adjoint system	 is given by

H��s	T 

�
BT

� �
sI � ��AT

���� ��CT
�
�

Using this and the block diagram of G shown in �gure ��

� a realization of G is
given by G�s	 
 CG�sI �AG	

��BG �DG� where

AG 
M�

BG 




B
�

�
CG 


�
� ���BT

�
DG 
 I�

Since AG 
 M� � and it can be shown that this realization of G is minimal� the j�
axis poles of G are exactly the imaginary eigenvalues of M� � and �����	 follows�

u y

H��s	T
�

H�s	

�

r

�

�
q

Figure ���� A realization of G�s� � �����I �H��s�TH�s����
 G has no
imaginary axis poles if and only if the inequality speci�cation kHk� � �
holds


The condition thatM� not have any imaginary eigenvalues can also be expressed
in terms of a related algebraic Riccati equation �ARE	�

ATX �XA� ���XBBTX � ���CTC 
 �� ����
	

�Conversely� M� is called the Hamiltonian matrix associated with the ARE ����
	�	
This equation will have a positive de�nite solution X if and only if M� has no
imaginary eigenvalues �in which case there will be only one such X	� If kHk� � ��
we can compute the positive de�nite solution to ����
	 as follows� We compute any
matrix T such that

T��M�T 




�A��

�A��

� �A��

�
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where �A�� is stable �i�e�� all of its eigenvalues have negative real part	� �One good
choice is to compute the ordered Schur form of M� � see the Notes and References
at the end of this chapter�	 We then partition T as

T 




T�� T��
T�� T��

�
�

and the solution X is given by

X 
 T��T
��
�� �

The signi�cance of X is discussed in the Notes and References for chapter ���

5.6.4 Computing the a-ShiftedH� Norm

The results of the previous section can be applied to the realization

�x 
 �A� aI	x�Bw� z 
 Cx

of the a�shifted transfer matrix H�s � a	� We �nd that kHk��a � � holds if and
only if the eigenvalues of A all have real part less than �a and the matrix


A� aI ���BBT

����CTC �AT � aI

�

has no imaginary eigenvalues�

5.6.5 Computing the Entropy

To compute the ��entropy of H� we �rst form the matrix M� in �����	� If M�

has any imaginary eigenvalues� then by the result �����	� kHk� � � and hence
I��H	 
�� If M� has no imaginary eigenvalues� then we �nd the positive de�nite
solution X of the ARE ����
	 as described above� The ��entropy is then

I��H	 
 �Tr
�
BTXB

�
� �����	

From ����
	� the matrix �X 
 �X satis�es the ARE

AT �X � �XA� ��� �XBBT �X � CTC 
 ��

Note that as � ��� this ARE becomes the Lyapunov equation for the observability
Gramian �����	� so the solution �X converges to the observability Gramian Wobs�
From �����	 and �����	 we see again that I��H	 � kHk�� as � � � �see ���
�	 in
section �����	�
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Notes and References

Norms of Signals and Systems for Control System Analysis

The use of norms in feedback system analysis was popularized in the �����s by researchers
such as Zames �Zam��b�	 Sandberg �San���	 Narendra �NG���	 and Willems �Wil���	
although some norms had been used in control systems analysis before these papers
 For
example	 the square of the H� norm is referred to as Iy in the ���� book �NGK����
chapter � of the ���� book �JNP���	 written by Philips	 is entitled RMS�Error Criterion
in Servomechanism Design�

A thorough reference on norms for signals and systems in the context of control systems
is Desoer and Vidyasagar �DV���
 This book contains general and precise de�nitions of
many of the norms in this and the previous chapter
 Mathematics texts covering many of
the norms we have seen include Kolmogorov and Fomin �KF��� and Aubin �Aub���
 The
bold H in the symbols H� and H� stands for the mathematician G
 H
 Hardy


The observation that the total variation of the step response is the peak gain of a transfer
function appears in Lunze �Lun���


Singular Value Plots

Singular value plots are discussed in	 for example	 Callier and Desoer �CD��a�	 Ma�
ciejowski �Mac���	 and Lunze �Lun���
 Analytical properties of singular values and nu�
merical algorithms for computing them are covered in Golub and Van Loan �GL���


The Entropy Interpretation

The simple interpretation of the entropy	 as the average square of the H� norm when a
random feedback is connected around a transfer function	 has not appeared before
 We do
not know how to generalize this interpretation to the case of a transfer matrix	 although
it is likely that there is a similar interpretation


To prove the result ��
��� we consider an arbitrary h � C	 and � a complex random
variable uniformly distributed on the disk of radius ���
 We then have

E

��� h

���h

���� � ��

�

Z ���

�

Z ��

�

��� h

�� rei�h

���� r d� dr
�

�
��� log��� jhj����� jhj � �
� jhj � �

�the integration over � can be evaluated by residues�
 By integrating over �	 the re�
sult ��
��� follows


Comparing Gains

The result ��
��� is from Boyd and Doyle �BD���


Small Gain Theorem

The small gain theorem from section �
�
� is a standard mathematical result
 Applications
of this result �and extensions� to feedback system analysis are discussed in Desoer and
Vidyasagar �DV��� and Vidyasagar �Vid���� see also chapter ��
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State-Space Norm Computations
Using the controllability or observability Gramian to compute H� norms is standard�
see for example �Fra���
 The Lyapunov equations that arise are nowadays solved nu�
merically by special methods� see Bartels and Stewart �BS��� and Golub	 Nash	 and
Van Loan �GNL���
 Tables of formulas for the H� norm of a transfer function	 in terms
of its numerator and denominator coe�cients	 can be found in Appendix E� of Newton	
Gould	 and Kaiser �NGK���
 These tables are based on a method that is equivalent to
solving the Lyapunov equations
 �Professor T
 Higgins points out that there are several
errors in these tables
�

The result on Hankel norm computation can be found in	 e�g�	 �Glo��� x��	� and �Fra���

The result of section �
�
� is from Boyd	 Balakrishnan	 and Kabamba �BBK���� see also
Robel �Rob��� and Boyd and Balakrishnan �BB�
�
 The method for computing the en�
tropy appears in Mustafa and Glover �MG�
� and Glover and Mustafa �GM���


A discussion of solving the ARE can be found in �AM�
�
 The method of solving the
ARE based on the Schur form is discussed in Laub �Lau���� see also the articles �AL���
Doo���
 Numerical issues of these and other state�space computations are discussed in
Laub �Lau���


Computing Some Other Norms
Computing the peak gain or peak�step norm from a state�space description of an LTI
system is more involved than computing the entropy or the H� or H� norm
 Perhaps
the simplest method is to numerically integrate �i�e�	 solve� the state�space equations
to obtain the impulse or step response matrix
 kHkpk gn could then be computed by
numerical integration of the integrals in the formula ��
���
 Similarly	 kHkpk step could be
determined directly from its de�nition and the computed step response matrix


For other norms	 e�g�	 kHkwc	 there is not even a simple formula like ��
���
 Nevertheless
it can be computed in several ways� we brie�y mention some here
 It can be expressed as

kHkwc � sup

�Z
�

�

h�t�w�t� dt

���� kwk� �Mampl� k �wk� �Mslew

�
� ��
���

which is an in�nite�dimensional convex optimization problem that can be solved using
the methods described in chapters �����
 Alternatively	 the �in�nite�dimensional� dual
problem can be solved�

kHkwc � min
	 � R


 � R� � R

Mamplk
k� �Mslew





	�
Z t

�

�h���� 
���� d�






�

�

This dual problem is unconstrained


The computation of kHkwc can also be formulated as an optimal control problem
 We
include w as an additional state	 so the dynamics are

�x � Ax� Bw� �w � u� z � Cx� x��� � w��� � ��

The peak and slew�rate limits on w can be enforced as the control and state constraints

ju�t�j �Mslew� jw�t�j �Mampl�
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The objective is then simply z�T � with T free
 The solution of this free end�point optimal
control problem �which always occurs as T � �� yields kHkwc
 This optimal control
problem has linear dynamics and convex state and control constraints	 so essentially all
numerical methods of solution will �nd the value kHkwc �and not some local minimum�

See	 for example	 the books by Pontryagin �Pon���	 Bryson and Ho �BH��� ch���	 and
the survey article by Polak �Pol�	�


The Figures of Section 5.2.9
The input signals in �gure �
�� were computed by �nely discretizing �with �rst�order hold�
the optimization problem

max
kwk� � �
k �wk� � �

Z ��

�

h���� t�w�t� dt

and solving the resulting linear program


The input signals in �gure �
�� were computed from ��
�� with T � ��


The unit�energy input signals in �gure �
�� give the largest possible square root output en�
ergy for t � �
 These input signals were computed by �nding the �nite�time controllability
Gramian

W
�
� W

���	

contr �

Z 	

�

eAtBBT eA
T t dt � Wcontr � e	AWcontre

	AT �

where H�s� � C�sI �A���B�

If 
 is the largest eigenvalue of W ���WobsW
��� and z is the corresponding eigenvector	

with kzk� � �	 then the input signal

w�t� �

�
BT eA

T �	�t�W����z for � � t � ��
� otherwise�

has unit energy	 and drives the system state to W ���z at t � �
 �It is actually the smallest

energy signal that drives the state from the origin to W ���z in � seconds
� The output for
t � �	

z�t� � CeA�t�	�W ���z�

has square root energy


��� �
�

max�W

���WobsW
����

����
�c�f� ��
����




Chapter 6

Geometry of Design
Specifications

In this chapter we explore some geometric properties that design speci�cations
may have� and de�ne the important notion of a closed�loop convex design spec�
i�cation� We will see in the sequel that simple and e�ective methods can be
used to solve controller design problems that are formulated entirely in terms of
closed�loop convex design speci�cations�

6.1 Design Specifications as Sets

H will denote the set of all nz � nw closed�loop transfer matrices� we may think
of H as the set of all conceivable candidate transfer matrices for the given plant�
Recall from chapter � that design speci�cations are boolean functions or predicates
on H� With each design speci�cation Di we will associate the set Hi of all transfer
matrices that satisfy it�

Hi � fH � H j H satis�es Dig �

Of course� there is a one�to�one correspondence between subsets of H �i�e�� sets
of transfer matrices	 and design speci�cations� For this reason we will also refer to
subsets of H as design speci�cations� Whether the predicate �e�g�� �os�H	 � 
�	
or subset �fH j �os�H	 � 
�g	 is meant should be clear from the context� if it
matters at all�

The boolean algebra of design speci�cations mentioned in chapter � corresponds
exactly to the boolean algebra of subsets� with some of the correspondences listed
in table 
���

127
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Design speci�cations Sets of transfer matrices
H satis�es D� H � H�

D� is stronger than D� H� � H�

D� is weaker than D� H� � H�

D� � D� H� �H�

D� is infeasible H� � �
D� is feasible H� �� �
D� is strictly stronger than D� H� � H�� H� �� H�

Table ��� Properties of design speci�cations and the corresponding sets of
transfer matrices�

6.2 Affine and Convex Sets and Functionals

In this section we introduce several important de�nitions�
We remind the reader that H is a vector space� roughly speaking� we have a

way of adding two of its elements �i�e�� nz � nw transfer matrices	 and multiplying
one by a real scalar� In a vector space� we have the important concepts of a line

and a line segment�
If H� 
H � H and � � R� we will refer to �H���	�	 
H as an a�ne combination

of H and 
H � We may think of an a�ne combination as lying on the line passing
through H and 
H� provided H �� 
H� If � � � � �� we will refer to the a�ne
combination �H���	�	 
H as a convex combination of H and 
H� We may think of
a convex combination as lying on the line segment between H and 
H � The number
� measures the fraction of the line segment that we move from 
H towards H to
yield �H � ��	 �	 
H � This can be seen in �gure 
���

De�nition ���� H� � H is a�ne if for any H� 
H � H�� and any � � R� �H �
��	 �	 
H � H��

Thus a set of transfer matrices is a�ne if� whenever two distinct transfer matrices
are in the set� so is the entire line passing through them�

De�nition ���� H� � H is convex if for any H� 
H � H�� and any � � ��� ���
�H � ��	 �	 
H � H��

Thus a set of transfer matrices is convex if� whenever two transfer matrices are
in the set� so is the entire line segment between them�

These notions are extended to functionals as follows�

De�nition ���� A functional � on H is a�ne if for any H� 
H � H� and any

� � R� ���H � ��	 �	 
H	 � ���H	 � ��	 �	�� 
H	�
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o

o

o

o

o

��I
� � ���

��R

� � �
��R

� � ��	

��R

� � �

��R

� � ����

�
H

�

H

Figure ��� The line passing through H and 
H consists of all a�ne combi�
nations of H and 
H� i�e�� �H �
���� 
H � � � R� The line segment between

H and 
H consists of all convex combinations ofH and 
H� i�e�� �H�
���� 
H
for � � � � ��

A functional is a�ne if the graph of its values along any line in H is a line in
R

�� an example is shown in �gure 
���

De�nition ���� A functional � on H is convex if for any H� 
H � H� and any

� � ��� ��� ���H � ��	 �	 
H	 � ���H	 � ��	 �	�� 
H	�

A functional is convex if the graph of its values along any line segment in H lies
below the line segment joining its values at the ends of the line segment� This is
shown in �gure 
���

Under very mild conditions we can test convexity of a set or functional by just
checking the case � � ���� Speci�cally� a set H� is convex if and only if whenever
H � H� and 
H � H�� the average �H � 
H	�� is also in H�� Similarly� a functional
� is convex if and only if� for every H and 
H we have

���H � 
H	��	 � ���H	 � �� 
H		���

Since �H� 
H	�� can be interpreted as the midpoint of the line segment between H
and 
H� this simple test is called the midpoint rule�

6.2.1 Some Important Properties

We collect here some useful facts about a�ne and convex sets and functionals�
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Figure ��� A functional � is a�ne if for every pair of transfer matrices H
and 
H the graph of �
�H � 
� � �� 
H� versus � is a straight line passing

through the points 
�� �
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Figure ��� A functional � is convex if for every pair of transfer matrices
H and 
H the graph of � along the line �H � 
� � �� 
H lies on or below a

straight line through the points 
�� �
 
H��� 
�� �
H��� i�e�� in the shaded
region�
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 A�ne implies convex� If a set or functional is a�ne� then it is convex� being
a�ne is a stronger condition than convex� If the functionals � and 	� are
both convex� then � is a�ne�


 Intersections� Intersections of a�ne or convex sets are a�ne or convex� re�
spectively�


 Weighted�sum Functional� If the functionals ��� � � � � �L are convex� and �� �
�� � � � � �L � �� then the weighted�sum functional

�wt sum�H	 � �����H	 � � � �� �L�L�H	

is convex �see section ��
��	�


 Weighted�max Functional� If the functionals ��� � � � � �L are convex� and �� �
�� � � � � �L � �� then the weighted�max functional

�wt max�H	 � max f�����H	� � � � � �L�L�H	g

is convex �see section ��
��	�

The last two properties can be generalized to the integral of a family of convex
functionals and the maximum of an in�nite family of convex functionals� Suppose
that for each � � I �I is an arbitrary index set	� the functional �� is convex� Then
the functional

��H	 � sup f���H	 j � � Ig

is convex�

We now describe some of the relations between sets and functionals that are
convex or a�ne� A functional equality speci�cation formed from an a�ne functional
de�nes an a�ne set� if � is a�ne and � � R� then

fH j ��H	 � �g

is a�ne� Similarly� if � is convex and � � R� then the functional inequality speci��
cation

fH j ��H	 � �g�

called a sub�level set of �� is convex�

The converse is not true� however� there are functionals that are not convex�
but every sub�level set is convex� Such functionals are our next topic�



132 CHAPTER 6 GEOMETRY OF DESIGN SPECIFICATIONS

6.2.2 Quasiconvex Functionals

De�nition ���� A functional � on H is quasiconvex if for each � � R� the func�

tional inequality speci�cation fH j ��H	 � �g is convex�

An equivalent de�nition of quasiconvexity� that has a form similar to the de��
nition of convexity� is� whenever H� 
H � H and � � ��� ���

���H � ��	 �	 
H	 � maxf��H	� �� 
H	g�

From de�nition 
�� we can see that every convex functional is quasiconvex�
The values of a quasiconvex functional along a line in H is plotted in �gure 
���

note that this functional is not convex� A quasiconvex function of one variable is
called unimodal� since� roughly speaking� it cannot have two separate regions where
it is small�

�
��
H
�
��
	
�
	

 H
	

�

��R

� � �
���

� � �

�
���

�� �H�

���

��H�

Figure ��� A functional � is quasiconvex if for every pair of transfer ma�
trices H and 
H the graph of � along the line �H�
���� 
H lies on or below

the larger of �
H� and �
 
H�� i�e�� in the shaded region�

A positive weighted maximum of quasiconvex functionals is quasiconvex� but a
positive�weighted sum of quasiconvex functionals need not be quasiconvex�

There is a natural correspondence between quasiconvex functionals and nested
families of convex speci�cations� i�e�� linearly ordered parametrized sets of speci�ca�
tions� Given a quasiconvex functional �� we have the family of functional inequality
speci�cations given by H� � fH j ��H	 � �g� This family is linearly ordered� H�

is stronger than H� if � � ��
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Conversely� suppose we are given a family of convex speci�cations H�� indexed
by a parameter � � R� such that H� is stronger than H� if � � � �so the family of
speci�cations is linearly ordered	� The functional

�family�H	
�
� inf f� j H � H�g �
��	

��family�H	
�
�
 ifH �� H� for all �	 simply assigns to a transfer matrixH the index

corresponding to the tightest speci�cation that it satis�es� as shown in �gure 
���
This functional �family is easily shown to be quasiconvex� and its sub�level sets are
essentially the original speci�cations�

H� � fH j �family�H	 � �g � H���

for any positive ��

H���

H���

H��� H���

H���

q

��I
H

Figure ��� Five members of a nested family of convex sets are shown�
Such nested families de�ne a quasiconvex function by 
����� for the given
transfer matrix H� we have �family
H� � ��

6.2.3 Linear Transformations

Convex subsets of H and convex functionals on H are often de�ned via linear trans�
formations� Suppose that V is a vector space and L � H � V is a linear function�
If V is a convex �or a�ne	 subset of V � then the subset of H de�ned by

H� � fH j L�H	 � V g

is convex �or a�ne	� Similarly if � is a convex �or quasiconvex or a�ne	 functional
on V � then the functional � on H de�ned by

��H	 � ��L�H		

is convex �or quasiconvex or a�ne� respectively	�
These facts are easily established from the de�nitions above� we mention a few

important examples�
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Selecting a Submatrix or Entry ofH

A simple but important example is the linear transformation that �selects� a sub�
matrix or entry from H� More precisely� V is the vector space of p � q transfer
matrices and L is given by

L�H	 � ET
z HEw

where Ez � R
nz�p and Ew � R

nw�q� the columns of Ez and Ew are unit vectors�
Thus L�H	 is a submatrix ofH �or an entry ofH if p � q � �	� the unit vectors in Ez

and Ew select the subsets of regulated variables and exogenous inputs� respectively�
If � is a functional on p� q transfer matrices� a functional � on H is given by

��H	 � ��L�H		 � ��ET
z HEw	� �
��	

Informally� � results from applying � to a certain submatrix of H� a convex �or
quasiconvex or a�ne	 functional of an entry or submatrix of H yields a convex �or
quasiconvex or a�ne	 functional of H�

To avoid cumbersome notation� we will often describe functionals or speci�ca�
tions that take as argument only an entry or submatrix of H� relying on the reader
to extend the functional to H via �
��	�

Time Domain Responses

Let V consist of scalar signals on R�� and let L be the transformation that maps
a transfer matrix into the unit step response of its i� k entry�

L�H	 � s

where� for t � ��

s�t	 �
�

�	

Z
�

��

Hik�j
	

j

ej�t d
�

Since L is linear� we see that a convex constraint on the step response of the i� k
entry of a transfer matrix is a convex speci�cation on H�

A similar situation occurs when L maps H into its response to any particular
input signal wpart�

L�H	 � Hwpart

where V is the set of all nz�component vector signals� If Zspec is a convex subset of
V � then the speci�cation

fH j Hwpart � Zspecg

is a convex subset of H�



6.3 CLOSED-LOOP CONVEX DESIGN SPECIFICATIONS 135

6.3 Closed-Loop Convex Design Specifications

Many design speci�cations have the property that the set of closed�loop transfer
matrices that satisfy the design speci�cation is convex� We call such design speci�
�cations closed�loop convex �

De�nition ���� A design speci�cation D is closed�loop convex if the set of closed�

loop transfer matrices that satisfy D is convex�

One of the themes of this book is that many design speci�cations are closed�loop

convex�

6.3.1 Open Versus Closed-Loop Formulation

We noted in section ��� that it is possible to formulate design speci�cations in terms
of the �open�loop	 controller transfer matrix K� instead of the closed�loop transfer
matrix H� as we have done� In such a formulation� a design speci�cation is a
predicate on candidate controllers� and the feasibility problem is to �nd a controller
K that satis�es a set of design speci�cations� Such a formulation may seem more
natural than ours� since the speci�cations refer directly to what we design�the
controller K�

There is no logical di�erence between these two formulations� since in sensible
problems there is a one�to�one correspondence between controllers and the closed�
loop transfer matrices that they achieve� The di�erence appears when we consider
geometrical concepts such as convexity� a closed�loop convex speci�cation will gen�
erally not correspond to a convex set of controllers� In chapters ����
� we will see
that convexity of the speci�cations is the key to computationally tractable solution
methods for the controller design problem� The same design problems� if expressed
in terms of the controller K� have speci�cations that are not convex� and hence do
not have this great computational advantage�

6.3.2 Norm-Bound Specifications

Many useful functionals are norms of an entry or submatrix of the transfer matrix
H� A general form for a design speci�cation is the norm�bound speci�cation

kHxx 	Hdes
xx k � �� �
��	

where k � k is some norm on transfer functions or transfer matrices �see chapter �	
and Hxx is a submatrix or entry of H �see section 
����	� We can interpret Hdes

xx as
the desired transfer matrix� and the norm k � k used in �
��	 as our measure of the
deviation of Hxx from the desired transfer matrix Hdes

xx � We often have Hdes
xx � ��

in which case �
��	 limits the size of Hxx�
We now show that the functional

��H	 � kHxx 	Hdes
xx k
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is convex� Let H and 
H be any two transfer matrices� and let � � � � �� Now�
using the triangle inequality and homogeneity property for norms� together with
the fact that � and �	 � are nonnegative� we see that

���H � ��	 �	 
H	 � k�Hxx � ��	 �	 
Hxx 	Hdes
xx k

� k��Hxx 	Hdes
xx 	 � ��	 �	� 
Hxx 	Hdes

xx 	k

� k��Hxx 	Hdes
xx 	k� k��	 �	� 
Hxx 	Hdes

xx 	k

� �kHxx 	Hdes
xx k� ��	 �	k 
Hxx 	Hdes

xx k

� ���H	 � ��	 �	�� 
H	�

so the functional � is convex� Since � is convex� the norm�bound speci�cation �
��	
is convex� In chapters ���� we will see that many speci�cations can be expressed
in the form �
��	� and are therefore closed�loop convex� �We note that the entropy
functional de�ned in section ����� is also convex� although it is not a norm�	

An important variation on the norm�bound speci�cation �
��	 is the speci�cation

kHxxk �
� �
��	

which requires that an entry or submatrix of H have a �nite norm� as measured by
k � k� This speci�cation is a�ne� since if Hxx and 
Hxx each satisfy �
��	 and � � R�
then we have

k�Hxx � ��	 �	 
Hxxk � j�jkHxxk� j�	 �jk 
Hxxk �
�

so that �Hxx � ��	 �	 
Hxx also satis�es �
��	�
If we use the H� norm for k � k� �
��	 is the speci�cation that Hxx be stable�

i�e�� the poles of Hxx have negative real parts� Similarly� if we use the a�shifted H�
norm as k � k� �
��	 is the speci�cation that the poles of Hxx have real parts less
than 	a� These speci�cations are therefore a�ne�

6.4 Some Examples

In chapters ���� we will encounter many speci�cations and functionals that are
a�ne or convex� in most cases we will simply state that they are a�ne or convex
without a detailed justi�cation� In this section we consider a few typical speci�ca�
tions and functionals for our standard example plant �see section ���	� and carefully
establish that they are a�ne or convex�

6.4.1 An Affine Specification

Consider the speci�cation that the closed�loop transfer function from the reference
input r to yp have unity gain at 
 � �� so that a constant reference input results in
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yp � r in steady�state� The set of �� � transfer matrices that corresponds to this
speci�cation is

Hdc � fH j H����	 � �g � �
��	

We will show that this set is a�ne� Suppose that H� 
H � Hdc� so that H����	 �

H����	 � �� and � � R� Then the transfer matrix H� � �H � ��	 �	 
H satis�es

H�����	 � �H����	 � ��	 �	 
H����	 � �� ��	 �	 � ��

and hence H� � Hdc�
Alternatively� we note that the speci�cationHdc can be written as the functional

equality constraint

Hdc � fH j �dc�H	 � �g �

where �dc�H	
�
� H����	 is an a�ne functional�

6.4.2 Convex Specifications

Consider the speci�cation Dact e� introduced in section ���� �the RMS deviation of
u due to the sensor and process noises is less than ����� The corresponding set of
transfer matrices is

Hact e� � fH j �act e��H	 � ���g �

where we de�ned the functional

�act e��H	
�
�

�
�

�	

Z
�

��

�
jH���j
	j

�Sproc�
	 � jH���j
	j
�Ssensor�
	

�
d


����

�

and Sproc and Ssens are the power spectral densities of the noises nproc and nsensor�
respectively�

To show that �act e� is a convex functional we �rst express it as a norm of the
submatrix �H�� H��� of H�

�act e��H	 �

������
�
�
�

�T
H

�
� � �

� �
� �

	


�
Wproc �
� Wsensor

�������
�

�

where jWproc�j
	j� � Sproc�
	 and jWsensor�j
	j� � Ssensor�
	� From the results
of sections 
���� and 
���� we conclude that �act e� is a convex functional� and
therefore Hact e� is a convex speci�cation�

As another example� consider the speci�cation Dos introduced in section ����
�the step response overshoot from the command to yp is less than ����� We
can see that the corresponding set of transfer matrices� Hos� is convex� using the
argument in section 
���� with i � �� k � � and the convex subset of scalar signals

V � fs � R� � R j s�t	 � ��� for t � �g � �
�
	

This is illustrated in �gure 
�
�
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Figure ��� The set V in 
���� is convex� since if the step responses s�� and

s�� do not exceed ���� then their average� 
s���
s������ also does not exceed
���� By the argument in section ������ the speci�cation Hos is convex�

6.4.3 A Quasiconvex Functional

We will see in chapter � that several important functionals are quasiconvex� for
example� those relating to settling time and bandwidth of a system� We describe
one such example here�

Consider the stability degree of a transfer matrix� de�ned by

�stab deg�H	
�
� max f�p j p is a pole of H g �

The functional �stab deg is quasiconvex since� for each ��

fH j �stab deg�H	 � �g � fH j kHk��� �
 for � � 	�g

�recall that k � k��� is the ��shifted H� norm described in section �����	� and we
saw above that the latter speci�cation is a�ne� �stab deg is not convex� however�
for most values of �� we have

�stab deg��H � ��	 �	 
H	 � max
n
�stab deg�H	� �stab deg� 
H	

o
�

6.5 Implications for Tradeoffs and Optimization

When the design speci�cations are convex� and more generally� when a family of
design speci�cations is given by convex functional inequalities� we can say much
more about the concepts introduced in chapter ��
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6.5.1 Performance Space Geometry

Suppose that in the multicriterion optimization problem described in section ����
the hard constraint Dhard and the objective functionals ��� � � � � �L are convex� Then
the region of achievable speci�cations in performance space�

A
�
�
n
a � R

L
��� Dhard � D

a�
��
� � � � � DaL

�L
is achievable

o
� �
��	

is also convex�
To see this� suppose that a and 
a each correspond to achievable speci�cations�

Then there are transfer matrices H and 
H that satisfy Dhard and also� for each k�
� � k � L�

�k�H	 � ak� �k� 
H	 � 
ak�

Now suppose that � � � � �� The transfer matrix �H ���	�	 
H satis�es the hard
constraint Dhard� since Dhard is convex� and also� for each k� � � k � L�

�k��H � ��	 �	 
H	 � �ak � ��	 �	
ak�

since the functional �k is convex� But this means that the speci�cation �a���	�	
a
corresponds to an achievable speci�cation� which veri�es that A is convex�

An important consequence of the convexity of the achievable region in perfor�
mance space is that every Pareto optimal speci�cation is optimal for the classical
optimization problem with weighted�sum objective� for some nonnegative weights
�c�f� �gure ���	� Thus the speci�cations considered in multicriterion optimization or
classical optimization with the weighted�sum or weighted�max objectives are exactly
the same as the Pareto optimal speci�cations�

In the next section we discuss another important consequence of the convexity
of A �which in fact is equivalent to the observation above	�

6.6 Convexity and Duality

The dual function � de�ned in section ��
�� is always concave� meaning that 	� is
convex� even if the objective functionals and the hard constraint are not convex� To
see this� we note that for each transfer matrix H that satis�es Dhard� the function
�H of � de�ned by

�H��	 � 	�����H		 � � � 	 �L�L�H	

is convex �indeed� linear	� Since 	� can be expressed as the maximum of this family
of convex functions� i�e��

	���	 � max f�H��	 j H satis�es Dhard g � �
��	

it is also a convex function of � �see section 
����	�
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The dual function can be used to determine speci�cations that are not achiev�
able� and therefore represent a limit of performance �recall the discussion in sec�
tion �����	� Whenever � � �� meaning � � R

L
�� and a � R

L� we have

���	 � aT� �� Dhard � D
a�
��
� � � � � DaL

�L
is unachievable � �
��	

To establish �
��	� suppose that a corresponds to an achievable speci�cation� i�e��
Dhard � D

a�
��
� � � � � DaL

�L
is achievable� Then there is some transfer matrix 
H that

satis�es Dhard and �i� 
H	 � ai for each i� Therefore whenever � � ��

���	 � min f�����H	 � � � �� �L�L�H	 j H satis�es Dhard g

� ����� 
H	 � � � �� �L�L� 
H	

� ��a� � � � �� �LaL

� aT��

The implication �
��	 follows�

a
�

a�

achievable

�
�� � aT�

unachievable

�

q

Dx

Figure ��� The shaded region corresponds to speci�cations that satisfy
�
�� � aT�� and hence by 
���� are unachievable� The speci�cation Dx is
unachievable� but cannot be proven unachievable by 
����� for any choice of
�� See also �gure ����

The speci�cations that �
��	 establishes are unachievable have the simple geo�
metric interpretation shown in �gure 
��� which suggests that when the region of
achievable speci�cations is convex� �
��	 rules out all unachievable speci�cations as
� varies over all nonnegative weight vectors� This intuition is correct� except for a
technical condition� More precisely� when Dhard and each objective functional �i is
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convex� and the region of achievable speci�cations in performance space is closed�
then we have�

the speci�cation corresponding to a is achievable
��

there is no � � � with ���	 � aT��
�
���	

The equivalence �
���	 is called the convex duality principle� or a theorem of

alternatives� since it states that exactly one of two alternative assertions must hold�
The geometrical interpretation of the duality principle can be seen from �gure 
���
�
���	 asserts that every speci�cation is either achievable �i�e�� lies in the shaded
region to the upper right	� or can be shown unachievable using �
��	 �i�e�� lies in
the shaded region to the lower left	 for some choice of ��

a
�

a�

achievable

�
�� � aT�

unachievable

�

Figure ��� Unlike �gure ��	� in this �gure the region of achievable spec�
i�cations is convex� so� by varying �� 
���� can be made to rule out every
speci�cation that is unachievable�

The convex duality principle �
���	 is often expressed in terms of pairs of con�
strained optimization problems� e�g�� minimizing the functional �� subject to the
hard constraint and functional inequality speci�cations for the remaining function�
als ��� � � � � �L� We de�ne

�pri
�
� min

n
���H	

��� H satis�es Dhard � D
a�
��
� � � � � DaL

�L

o
� �
���	

�dual
�
� max f���		 a��� 	 � � � 	 aL�L j � � �� �� � �g � �
���	

The optimization problem on the right�hand side of �
���	 is called the primal

problem� the right�hand side of �
���	 is called a corresponding dual problem� The
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convex duality principle can then be stated as follows� if the hard constraint and
the objective functionals are all convex� then we have �pri � �dual� �Here we do
not need the technical condition� provided we interpret the min and max as an
in�mum and supremum� respectively� and use the convention that the minimum of
an infeasible problem is 
�	

For the case when there are no convexity assumptions on the hard constraint
or the objectives� then we still have �pri � �dual� but strict inequality can hold� in
which case the di�erence is called the duality gap for the problem�
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Notes and References

See the Notes and References for chapters �� and �� for general books covering the notion
of convexity�

Closed-Loop Convex Specifications
The idea of a closed�loop formulation of controller design speci�cations has a long history�
see section ����� In the early work� however� convexity is not mentioned explicitly�

The explicit observation that many design speci�cations are closed�loop convex can be
found in Salcudean�s thesis �Sal���� Boyd et al� �BBB���� Polak and Salcudean �PS����
and Boyd� Barratt� and Norman �BBN����

Optimization
Many of the Notes and References from chapter � consider in detail the special case
of convex speci�cations and functionals� and so are relevant� See also the Notes and
References from chapters �� and ���

Duality
The fact that the nonnegatively weighted�sum objectives yield all Pareto optimal speci�ca�
tions is shown in detail in Da Cunha and Polak �CP���� and in chapter � of Clarke �Cla����
The results on convex duality are standard� and can be found in complete detail in� e�g��
Barbu and Precupanu �BP��� or Luc �Luc����

A Stochastic Interpretation of Closed-Loop Convex Functionals
Jensen�s inequality states that if � is a convex functional� H � H� and Hstoch is any
zero�mean H�valued random variable� then

�
H� � E�
H �Hstoch�� 
�����

i�e�� zero�mean random �uctuations in a transfer matrix increase� on average� the value of
a convex functional� In fact� Jensen�s inequality characterizes convex functionals� if 
�����
holds for all 
deterministic� H and all zero�mean Hstoch� then � is convex�
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Chapter 7

Realizability and Closed-Loop
Stability

In this chapter we consider the design speci�cations of realizability and internal
�closed�loop� stability� The central result is that the set of closed�loop transfer
matrices realizable with controllers that stabilize the plant is a�ne and readily
described� This description is referred to as the parametrization of closed�loop
transfer matrices achieved by stabilizing controllers�

7.1 Realizability

An important constraint on the transfer matrixH � H is that it should be the closed�

loop transfer matrix achieved by some controller K� in other words� H should have
the form Pzw�PzuK�I	PyuK	��Pyw for some K� We will refer to this constraint
as realizability �

Hrlzbl
�
�
�
H

�� H � Pzw � PzuK�I 	 PyuK	��Pyw for some K


� ����	

We can think ofHrlzbl as expressing the dependencies among the various closed�loop
transfer functions that are entries of H�

As an example� consider the classical SASS ��DOF control system described in
section ������ The closed�loop transfer matrix is given by

H �

�
����

P�
� � P�K

	
P�K

� � P�K

P�K

� � P�K

	
P�K

� � P�K
	

K

� � P�K

K

� � P�K

	
���


�

�
P���	 T 	 	T T

	T 	T�P� T�P�

�
�
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where T is the classical closed�loop I�O transfer function� Hence if H is the closed�
loop transfer matrix realized by some controller K� i�e�� H � Hrlzbl� then we must
have

H�� � H��� ����	

P�H�� � H��� ����	

H�� 	 P�H�� � P�� ����	

H�� � 	H��� ����	

H�� � 	H��� ���
	

It is not hard to show that the �ve explicit speci�cations on H given in �������
	
are not just implied by realizability� they are equivalent to it� Roughly speaking�
we have only one transfer function that we can design� K� whereas the closed�loop
transfer matrix H contains six transfer functions� The �ve constraints �������
	
among these six transfer functions make up the missing degrees of freedom�

The speci�cations �������
	 are a�ne� so at least for the classical SASS ��DOF
controller� realizability is an a�ne speci�cation� In fact� we will see that in the
general case� Hrlzbl is a�ne� Thus� realizability is a closed�loop convex speci�cation�

To establish that Hrlzbl is a�ne in the general case� we use a simple trick that
replaces the inverse appearing in ����	 with a simpler expression� Given any nu�ny
transfer matrix K� we de�ne the nu � ny transfer matrix R by

R � K�I 	 PyuK	��� ����	

This correspondence is one�to�one� given any nu�ny transfer matrix R� the nu�ny
transfer matrix K given by

K � �I �RPyu	
��R ����	

makes sense and satis�es ����	�
Hence we can express the realizability speci�cation as

Hrlzbl � fH j H � Pzw � PzuRPyw for some nu � ny Rg � ����	

This form ofHrlzbl can be given a simple interpretation� which is shown in �gure ����
The transfer matrix R can be thought of as the �controller� that would realize the
closed�loop transfer matrixH if there were no feedback through our plant� i�e�� Pyu �
� �see �gure ����b		� Our trick above is the observation that we can reconstruct
the controller K that has the same e�ect on the true plant as the controller R that
operates on the plant with Pyu set to zero� Variations on this simple trick will
appear again later in this chapter�

From ����	 we can establish that Hrlzbl is a�ne� Suppose that H� 
H � Hrlzbl�
Then there are two nu � ny transfer matrices R and 
R such that

H � Pzw � PzuRPyw�


H � Pzw � Pzu 
RPyw�
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Figure ��� The closed�loop transfer matrix H can be realized by the feed�
back system 
a� for some K if and only if it can be realized by the system

b� for some transfer matrix R� In 
b� there is no feedback�

Let � � R� We must show that the transfer matrix H� � �H � �� 	 �	 
H is also
realizable as the closed�loop transfer matrix of our plant with some controller� We
note that

H� � Pzw � PzuR�Pyw�

where

R� � �R� ��	 �	 
R�

This shows that H� � Hrlzbl�
We can �nd the controller K� that realizes the closed�loop transfer matrix H�

using the formula ����	 with R�� If K and 
K are controllers that yield the closed�
loop transfer matrices H and 
H � respectively� the controller that realizes the closed�
loop transfer matrix H� is not �K � ��	 �	 
K� it is

K� � �A� �B	���C � �D	 �����	

where

A � I � 
K�I 	 Pyu 
K	��Pyu�
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B � K�I 	 PyuK	��Pyu 	 
K�I 	 Pyu 
K	��Pyu�

C � 
K�I 	 Pyu 
K	���

D � K�I 	 PyuK	�� 	 
K�I 	 Pyu 
K	���

The special form of K� given in �����	 is called a bilinear or linear fractional de�
pendence on �� We will encounter this form again in section ����
�

7.1.1 An Example

We consider the standard plant example of section ���� The step responses from the
reference input r to yp and u for each of the controllers K�a� and K�b� of section ���
are shown in �gures ����a	 and �b	� Since Hrlzbl is a�ne� we conclude that every
transfer matrix on the line passing through H�a� and H�b��

�H�a� � ��	 �	H�b�� � � R�

can be realized as the closed�loop transfer matrix of our standard plant with some
controller� Figures ����c	 and �d	 show the step responses from r to yp and u of �ve
of the transfer matrices on this line�

The average of the two closed�loop transfer matrices �� � ���	 is realized by
the controller K��	� which can be found from �����	� Even though both K�a� and
K�b� are �rd order� K��	 turns out to be �th order� From this fact we draw two
conclusions� First� the speci�cation that H be the transfer matrix achieved by a
controller K of order no greater then n�

Hrlzbl�n
�
�

�
H

���� H � Pzw � PzuK�I 	 PyuK	��Pyw
for some K with order�K	 � n

�
�

is not in general convex �whereas the speci�cation Hrlzbl� which puts no limit on the
order of K� is convex	� Our second observation is that the controller K��	� which
yields a closed�loop transfer matrix that is the average of the closed�loop transfer
matrices achieved by the controllers K�a� and K�b�� would not have been found by
varying the parameters �e�g�� numerator and denominator coe�cients	 in K�a� and
K�b��

7.2 Internal Stability

We remind the reader that a transfer function is proper if it has at least as many
poles as �nite zeros� or equivalently� if it has a state�space realization� a transfer
function is stable if it is proper and all its poles have negative real part� �nally� a
transfer matrix is stable if all of its entries are stable� We noted in section 
����
that these are a�ne constraints on a transfer function or transfer matrix�
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Figure ��� �a� shows the closed�loop step responses from r to yp for the

standard example with the two controllersK�a� andK�b�� �b� shows the step
responses from r to u� In �c� and �d� the step responses corresponding to
�ve di�erent values of � are shown� Each of these step responses is achieved
by some controller�

7.2.1 A Motivating Example

Consider our standard example SASS ��DOF control system described in section ����
with the controller

K�s� �
	
 � 		s

��� s
�

This controller yields the closed�loop I
O transfer function

T �s� �
		s� 	


s� � ��s� � 		s� 	

�

		s� 	


�s� 	���s� ��
�

which is a stable lowpass �lter� Thus� we will have yp � r provided the reference
signal r does not change too rapidly� the controller K yields good tracking of slowly
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varying reference signals�
If realizability and good tracking of slowly varying reference signals are our

only speci�cations� then K is a good controller� The potential problem with this
controller can be seen by examining the whole closed�loop transfer matrix�

H �

�
���

��� s

�s� 	���s� 
�
� 		s� 	�

�s� 	���s� 
�

		s� 	�

�s� 	���s� 
�

� 		s� 	�

�s� 	���s� 
�
� s��		s� 	����� � s�

�s� 	���s� 
����� s�

s��		s� 	����� � s�

�s� 	���s� 
����� s�

�
����

The entries H�� and H��� which are the closed�loop transfer functions from the
sensor noise and reference input to u� are unstable� for example� a reference input
with a very small peak can cause the actuator signal to have a very large peak� a
situation that is probably undesirable�
So with the controller K� the I
O transfer function T is quite benign� even

desirable� but the closed�loop system will probably have a very large actuator signal�
For a classical design approach� in which the requirement that the actuator signal
not be too large is not explicitly stated �i�e�� it is side information�� this example
provides a �paradox�� the I
O transfer function is acceptable� but the controller is
not a reasonable design�
This example shows the importance of considering all of the closed�loop transfer

functions of interest in a control system� i�e�� H� and not just the I
O transfer
function T � In our framework� there is no paradox to explain� the controller K can
be seen to be unacceptable by examining the whole closed�loop transfer matrix H�
and not just T �
This phenomenon of a controller yielding a stable I
O transfer function� but with

other closed�loop transfer functions unstable� is called internal instability� The qual�
i�er internal stresses that the problem with the design cannot be seen by examining
the I
O transfer function alone�
Various arguments have been made to explain the �paradox� of this example�

i�e�� why our controller K is not an acceptable design� They include�

�� The unstable plant zero at s � �� is canceled by the controller pole at s � ���
Such unstable pole�zero cancellations between the plant and controller cannot
be allowed� because a slight perturbation of the plant zero� e�g�� to s � �����
will cause the I
O transfer function to become unstable�

�� A state�space description of the closed�loop system will be unstable �it will
have an eigenvalue of ���� so for most initial conditions� the state will grow
larger and larger as time progresses� The unstable mode is unobservable from
yp� which is why it does not appear as a pole in the I
O transfer function�

These are valid arguments� but in fact� they correspond to di�erent �new�� previ�
ously unstated� speci�cations on our system� In addition to the speci�cations of
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realizability and stability of the I
O transfer function� ��� is a sensitivity speci�ca�
tion� and ��� requires that other signals �the components of the state vector� should
not grow too large when the initial conditions are nonzero� Since these speci�ca�
tions are probably necessary in any real control system� they should be explicitly
included in the speci�cations�

7.2.2 The Desoer-Chan Definition

Desoer and Chan gave a de�nition of internal stability of a closed�loop system
that rules out the problem with our example in section ����� and other similar
pathologies� The de�nition is�

De�nition ���� The closed�loop system with plant P and controller K is internally
stable if the four transfer matrices

Hu�� � K�I � PyuK�
��Pyu� ������

Hu�� � K�I � PyuK�
��� ������

Hy�� � �I � PyuK�
��Pyu� ����	�

Hy�� � �I � PyuK�
��� ������

are stable� In this case we say the controller K stabilizes the plant P �

These transfer matrices can be interpreted as follows� Suppose that �� and ��
are an input�referred process noise and a sensor noise� respectively� as shown in
�gure ��	� Then the four transfer matrices ����������� are the closed�loop transfer
matrices from these noises to u and y� So� roughly speaking� internal stability
requires that a small process or sensor noise does not result in a very large actuator
or sensor signal�

Pyu

u yK

�� ��r

�

�
r

� �

q q

Figure ��� Sensor and actuator noises used in the formal de�nition of
internal stability� K stabilizes P if the transfer matrices from �� and �� to
u and y are all stable�

The speci�cation of internal stability can be made in our framework as follows�
We must include sensor and actuator�referred process noises in the exogenous input
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signal w� and we must include u and y in the regulated variables vector z� in which
case the four transfer matrices ����������� appear as submatrices of the closed�loop
transfer matrix H� Internal stability is then expressed as the speci�cation that
these entries of H be stable� which we mentioned in chapter 
 �section 
����� is an
a�ne speci�cation�
It seems clear that any sensible set of design speci�cations should limit the e�ect

of sensor and process noise on u and y� Indeed� a sensible set of speci�cations will
constrain these four transfer matrices more tightly than merely requiring stability�
some norm of these transfer matrices will be constrained� So sensible sets of spec�
i�cations will generally be strictly tighter than internal stability� internal stability
will be a redundant speci�cation� We will see examples of this in chapter ��� for
the LQG and H� problems� �niteness of the objective will imply internal stability�
provided the objectives satisfy certain sensibility requirements� See the Notes and
References at the end of this chapter�

7.2.3 Closed-loop Affineness of Internal Stability

We now consider the speci�cation that H is the closed�loop transfer matrix achieved
by a controller that stabilizes the plant�

Hstable �

�
H

���� H � Pzw � PzuK�I � PyuK�
��Pyw

for some K that stabilizes P

�
� ������

Of course� this is a stronger speci�cation than realizability�
Like Hrlzbl� Hstable is also a�ne� if K and �K each stabilize P � then for each

� � R� the controller K� given by ������ also stabilizes P � In the example of
section ������ the controllers K	a
 and K	b
 each stabilize the plant� Hence the �ve
controllers that realize the �ve step responses shown in �gure ��� also stabilize the
plant�
We can establish that Hstable is a�ne by direct calculation� Suppose that con�

trollers K and �K each stabilize the plant� yielding closed�loop transfer matrices H
and �H� respectively� We substitute the controller K� given in ������ into the four
transfer matrices ������������ and after some algebra we �nd that

K��I � PyuK��
��Pyu � �K�I � PyuK�

��Pyu � ��� �� �K�I � Pyu �K�
��Pyu�

K��I � PyuK��
�� � �K�I � PyuK�

�� � ��� �� �K�I � Pyu �K�
���

�I � PyuK��
��Pyu � ��I � PyuK�

��Pyu � ��� ���I � Pyu �K�
��Pyu�

�I � PyuK��
�� � ��I � PyuK�

�� � ��� ���I � Pyu �K�
���

Thus� the four transfer matrices ����������� achieved by K� are a�ne combinations
of those achieved by K and �K� Since the right�hand sides of these equations are all
stable� the left�hand sides are stable� and therefore K� stabilizes P �
We can use the same device that we used to simplify our description of Hrlzbl�

The four transfer matrices ����������� can be expressed in terms of the transfer
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matrix R given in ������

K�I � PyuK�
��Pyu � RPyu� ����
�

K�I � PyuK�
�� � R� ������

�I � PyuK�
��Pyu � �I � PyuR�Pyu� ������

�I � PyuK�
�� � I � PyuR� ������

Hence we have

Hstable �

	

�


�
Pzw � PzuRPyw

��������

RPyu�
R�
I � PyuR�
�I � PyuR�Pyu

are stable




�


�
� ������

We will �nd this description useful�

7.2.4 Internal Stability for a Stable Plant

If the plant P is stable� then in particular Pyu is stable� It follows that if R is stable�
then so are RPyu� I � PyuR� and �I � PyuR�Pyu� Hence we have

Hstable � fPzw � PzuRPyw j R stableg � ������

This is just our description ofHrlzbl� with the additional constraint that R be stable�
Given any stable R� the controller that stabilizes P and yields a closed�loop

transfer matrix H � Pzw � PzuRPyw is

K � �I �RPyu�
��R� ������

Conversely� every controller that stabilizes P can be expressed by ������ for some
stable R�

7.2.5 Internal Stability via Interpolation Conditions

For the classical SASS ��DOF control system �see section ��	���� the speci�cation of
internal stability can be expressed in terms of the I
O transfer function T � although
the speci�cation is not as simple as stability of T alone �recall our motivating
example�� We have already noted that a closed�loop transfer matrix H that is
realizable has the form

H �

�
P���� T � �T T

�T �T�P� T�P�

�

�

�
P� � �
� � �

�
� T

�
�P� �� �
�� ���P� ��P�

�
� ����	�

where T is the I
O transfer function� We will describe Hstable as the set of transfer
matrices of the form ����	�� where T satis�es some additional conditions�
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Let p�� � � � � pn be the unstable poles of P� �i�e�� the poles of P� that have nonneg�
ative real part� and let z�� � � � � zm be the unstable zeros of P� �i�e�� the zeros of P�
that have nonnegative real part�� we will assume for simplicity that they are distinct
and have multiplicity one� Let r denote the relative degree of P�� i�e�� the di�erence
between the degrees of its numerator and its denominator� Then a transfer matrix
H is achievable with a stabilizing controller if and only if it has the form ����	��
where T satis�es�

�� T is stable�

�� T �p�� � � � � � T �pn� � ��

	� T �z�� � � � � � T �zm� � �� and

�� the relative degree of T is at least r�

These conditions are known as the interpolation conditions �on T � they can also
be expressed in terms of S or other closed�loop transfer functions�� The interpolation
conditions can be easily understood in classical control terms� Condition � re�ects
the fact that the loop gain P�K is in�nite at the unstable plant poles� and so we
have perfect tracking �T � �� at these frequencies� Conditions 	 and � re�ect the
fact that there is no transmission through P� at a frequency where P� has a zero�
and thus T � � at such a frequency� �Internal stability prohibits an unstable pole
or zero of P� from being canceled by a zero or pole of K��
The interpolation conditions are also readily understood in terms of our descrip�

tion of Hstable given in ������� Substituting the plant transfer matrix for the ��DOF
control system ������ into ������ and using R � T�P� we get�

Hstable � fH of form ����	� j T� T�P�� ��� T �P� are stableg � ������

Assuming T is stable� T�P� will be stable if T vanishes at z�� � � � � zm and in addition
T has relative degree at least that of P�� in other words� T�P� is stable if conditions
�� 	� and � of the interpolation conditions hold� Similarly� ��� T �P� will be stable
if T is stable and � � T vanishes at p�� � � � � pn �i�e�� conditions � and � of the
interpolation conditions hold��
The interpolation conditions are the earliest description of Hstable� and date

back at least to ���� �see the Notes and References at the end of this chapter for
details��

7.2.6 General Free Parameter Representation

In the general case there is a free parameter description of the set of closed�loop
transfer matrices achievable with stabilizing controllers�

Hstable � fT� � T�QT� j Q is a stable nu � ny transfer matrixg � ������
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where T�� T�� and T� are certain stable transfer matrices that depend on the plant�
Q is referred to as the parameter in ������� not in the sense of a real number that is
to be designed �e�g�� the integrator time constant in a PI controller�� but rather in
the sense that it is the free parameter in the description ������� We saw a special
case of this form already in the example of the stable plant�in that case� Pzw� Pzu
and Pyw are possible choices for T�� T� and T�� respectively�
The controller that stabilizes the plant and yields closed�loop transfer matrix

H � T� � T�QT� has the linear fractional form

KQ � �A�BQ����C �DQ� ����
�

where A� B� C� D are certain stable transfer matrices related to T�� T�� and T��
Thus the dependence of KQ on Q is bilinear �c�f� equation ��������
It is not hard to understand the basic idea behind the free parameter represen�

tation ������ of the set of achievable closed�loop transfer matrices ������� although
a complete derivation is fairly involved �see the Notes and References at the end of
this chapter��
We consider the subspace of nu � ny transfer matrices given by

S � fS j S� PyuS� SPyu� PyuSPyu are stableg �

The basic idea is that an S � S must have the appropriate zeros that cancel the
unstable poles of Pyu� These zeros can be arranged by multiplying a stable transfer

matrix on the left and right by appropriate stable transfer matrices D and �D�

S �
n
DQ �D

��� Q is stableo �
D and �D are not unique� but any suitable choice has the property that if Q is stable�
then each of DQ �D� PyuDQ �D� DQ �DPyu� and PyuDQ �DPyu are stable� We shall not

derive the form of D and �D�
By comparing ������ and ������ we see that one possible choice for T� and T�

in ������ is

T� � PzuD

T� � �DPyw�

T� can be taken to be any closed�loop transfer matrix achieved by some stabilizing
controller� The references cited at the end of this chapter contain the complete
details�

7.3 Modified Controller Paradigm

The descriptions of Hstable given in the previous sections can be given an interpre�
tation in terms of modifying a given nominal controller that stabilizes the plant�
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Given one controller Knom that stabilizes the plant� we can construct a large fam�

ily of controllers that stabilize the plant� just as the formula ������ shows how to
construct a one�parameter family of controllers that stabilize the plant�
The construction proceeds as follows�

� We modify or augment the nominal controller Knom so that it produces an
auxiliary output signal e �of the same size as y� and accepts an auxiliary input
signal v �of the same size as u� as shown in �gure ���� This augmentation is
done in such a way that the closed�loop transfer matrix from v to e is zero
while the open�loop controller transfer matrix from y to u remains Knom�

� We connect a stable nu � ny transfer matrix Q from e to v as shown in
�gure ���� and collect Knom and Q together to form a new controller� K�

P

w

u

z

y

Knom

v e

Hev � � closed loop

Figure ��� The nominal controller Knom is augmented to produce a signal
e and accept a signal v� The closed�loop transfer function from v to e is ��

The intuition is that K should also stabilize P � since the Q system we added
to Knom is stable and �sees no feedback�� and thus cannot destabilize our system�
However� Q can change the closed�loop transfer matrix H� To see how Q a�ects the
closed�loop transfer matrixH� we de�ne the following transfer matrices in �gure ����

� U� is the closed�loop transfer matrix from w to z�

� U� is the closed�loop transfer matrix from v to z�

� U� is the closed�loop transfer matrix from w to e�
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P

w

u

z

y

Knom

v eQ

K

Figure ��� Modi�cation of nominal controller Knom with a stable transfer
matrix Q�

Since the transfer matrix from v to e in �gure ��� is zero� we can redraw �gure ���
as �gure ��
� Figure ��
 can then be redrawn as �gure ���� which makes it clear
that the closed�loop transfer matrix H resulting from our modi�ed controller K is
simply

H � U� � U�QU�� ������

which must be stable because Q� U�� U� and U� are all stable�

It can be seen from ������ that as Q varies over all stable transfer matrices� H
sweeps out the following a�ne set of closed�loop transfer matrices�

Hmcp � fU� � U�QU� j Q stableg �

Of course� Hmcp � Hstable� This means that a �possibly incomplete� family of
stabilizing controllers can be generated from the �augmented� nominal controller
using this modi�ed controller paradigm�

If the augmentation of the nominal controller is done properly� then the modi�ed
controller paradigm yields every controller that stabilizes the plant P � in other
words� Hmcp � Hstable� In this case� U�� U�� and U� can be used as T�� T�� and T�
in the free parameter representation of Hstable given in equation �������
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U�

U�

U�

w z

v e

U

Q

r

�

�
q

Figure ��� Figure ��
 redrawn�

U�

U�U�

w z

ve
Q

r

�

�
q

Figure ��� Figure ��� redrawn�

7.3.1 Modified Controller Paradigm for a Stable Plant

As an example of the modi�ed controller paradigm� we consider the special case of
a stable plant �see section ������� Since the plant is stable� the nominal controller
Knom � � stabilizes the plant�
How do we modify the zero controller to produce e and accept v� One obvious

method is to add v into u� and let e be the di�erence between y and Pyuu� which
ensures that the closed�loop transfer matrix from v to e is zero� as required by the
modi�ed controller paradigm� This is shown in �gure ����
From �gure ��� we see that

U� � Pzw�

U� � Pzu�

U� � Pyw�

To apply the second step of the modi�ed controller paradigm� we connect a stable
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P

w

u

z

y

Knom � �

v e

Pyu r

�

�

q

q

r

�

�

Figure ��� One method of extracting e and injecting v when the plant is
stable�
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w

u

z

y

Knom � �

v eQ

Pyu

K

r

�

�

q

q
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�

�

Figure ��� The modi�ed controller paradigm� for a stable plant� using the
augmented controller shown in �gure ����
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Q as shown in �gure ���� so that the closed�loop transfer matrix is

H � U� � U�QU��

Thus the set of closed�loop transfer matrices achievable by the modi�ed controller
shown in �gure ��� is

Hmcp � fPzw � PzuQPyw j Q stableg �

The expression here for Hmcp is the same as the expression for Hstable in equa�
tion ������ in section ������ So in this case the modi�ed controller paradigm gener�
ates all stabilizing controllers� any stabilizing controller K for a stable plant P can
be implemented with a suitable stable Q as shown in �gure ����
The reader can also verify that the connection of Q with the augmented nominal

controller yields K � �I � QPyu�
��Q�exactly the same formula as ������ with Q

substituted for R�

7.4 A State-Space Parametrization

A general method of applying the modi�ed controller paradigm starts with a nom�
inal controller that is an estimated�state feedback� The estimated�state�feedback
controller is given by

u � �Ksfb�x� ������

whereKsfb is some appropriate matrix �the state�feedback gain� and �x is an estimate
of the component of x due to u� governed by the observer equation

��x � AP �x�Buu� Lest�y � Cy�x�� ������

where Lest is some appropriate matrix �the estimator gain�� The transfer matrix of
this controller is thus

Knom�s� � �Ksfb�sI �AP �BuKsfb � LestCy�
��Lest�

Knom will stabilize P provided Ksfb and Lest are chosen such that AP � BuKsfb

and AP � LestCy are stable� which we assume in the sequel�
To augment this estimated�state�feedback nominal controller� we inject v into

u� before the observer tap� meaning that ������ is replaced by

u � �Ksfb�x� v� ���	��

and therefore the signal v does not induce any observer error� For the signal e we
take the output prediction error �

e � y � Cy�x� ���	��
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P

�sI � AP �
��

�sI � AP �
��
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qBQCQ

Figure ��	
 The modi�ed controller paradigm as applied to a nominal
estimated�state�feedback controller Knom� v is added to the actuator signal
u before the observer tap� and e is the output prediction error� With the
stable Q realization added� the modi�ed controller is called an observer�
based controller�
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This is shown in �gure �����
The requirement that the closed�loop transfer matrix from v to e be zero is

satis�ed because the observer state error� x � �x� is uncontrollable from v� and
therefore the transfer matrix from v to x � �x is zero� The transfer matrix from v
to e is Cy times this last transfer matrix� and so is zero�
Applying the modi�ed controller paradigm to the estimated�state�feedback con�

troller yields the observer�based controller shown in �gure ����� The observer�based
controller is just an estimated�state�feedback controller� with the output prediction
error processed through a stable transfer matrix Q and added to the actuator signal
before the observer tap�
In fact� this augmentation is such that the modi�ed controller paradigm yields

every controller that stabilizes the plant� Every stabilizing controller can be real�
ized �likely nonminimally� as an observer�based controller for some choice of stable
transfer matrix Q�
From the observer�based controller we can form simple state�space equations for

the parametrization of all controllers that stabilize the plant� and all closed�loop
transfer matrices achieved by controllers that stabilize the plant�
The state�space equations for the augmented nominal controller are� from ������

��	���

��x � �AP �BuKsfb � LestCy��x� Lesty �Buv ���	��

u � �Ksfb�x� v ���		�

e � y � Cy�x� ���	��

The state�space equations for the closed�loop system with the augmented con�
troller are then found by eliminating u and y from ���	����	�� and the plant equa�
tions ����������� of section ����

�x � APx�BuKsfb�x�Bww �Buv
��x � LestCyx� �AP �BuKsfb � LestCy��x� LestDyww �Buv

z � Czx�DzuKsfb�x�Dzww �Dzuv

e � Cyx� Cy�x�Dyww�

The transfer matrices T�� T�� and T� can therefore be realized as�
T��s� T��s�
T��s� �

�
� CT �sI �AT �

��BT �DT � ���	��

where

AT �

�
AP �BuKsfb

LestCy AP �BuKsfb � LestCy

�

BT �

�
Bw Bu

LestDyw Bu

�
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CT �

�
Cz �DzuKsfb

Cy �Cy

�

DT �

�
Dzw Dzu

Dyw �

�
�

If Q has state�space realization

�xQ � AQxQ �BQe ���	
�

v � CQxQ �DQe� ���	��

then a state�space realization of the observer�based controller can be found by elim�
inating e and v from the augmented controller equations ���	����	�� and the Q
realization ���	
���	���

��x � �AP �BuKsfb � LestCy �BuDQCy��x

�BuCQxQ � �Lest �BuDQ�y ���	��

�xQ � �BQCy�x�AQxQ �BQy ���	��

u � ��Ksfb �DQCy��x� CQxQ �DQy ������

so that

K�s� � CK�sI �AK�
��BK �DK � ������

where

AK �

�
AP �BuKsfb � LestCy �BuDQCy BuCQ

�BQCy AQ

�

BK �

�
Lest �BuDQ

BQ

�

CK �
�
�Ksfb �DQCy CQ

�
DK � DQ�

Some algebra veri�es that the closed�loop transfer matrix H given by ������ of
section ��� does indeed equal T� � T�QT��

7.5 Some Generalizations of Closed-Loop Stability

So far� our discussion in this chapter has been built around the notion of a stable
transfer function� i�e�� a transfer function for which each pole p satis�es �p � �� We
saw in chapter � that stability is equivalent to several other important properties of a
transfer function� e�g�� �niteness of its peak or RMS gain� In fact� the material in this
chapter can be adapted to various generalized notions of stability� The references
discuss these ideas in a general setting� we will describe a speci�c example in more
detail�



166 CHAPTER 7 REALIZABILITY AND CLOSED-LOOP STABILITY

Instead of stability� we consider the requirement that each pole of a transfer
function should satisfy �p � ���� and j	pj � ��p� We will call such transfer
functions G�stable �G stands for generalized�� In classical terminology� G�stability
guarantees a stability degree and a minimum damping ratio for a transfer function�
as illustrated in �gure �����

��p�

��p�

���
p � ����

Figure ��		 A transfer function is G�stable if its poles lie in the region
to the left� In classical control terminology� such transfer functions have a
stability degree of at least ��� and a damping ratio of at least ��

p
�� All

of the results in this chapter can be adapted to this generalized notion of
stability�

We say that a controller K G�stabilizes the plant P if every entry of the four
transfer matrices ����������� is G�stable �c�f� de�nition ����� It is not hard to show
that HG�stable� the speci�cation that the closed�loop transfer matrix is achievable
by a G�stabilizing controller� is a�ne� in fact� we have

HG�stable �

	

�


�
Pzw � PzuRPyw

��������

RPyu�
R�
I � PyuR�
�I � PyuR�Pyu

are G�stable




�


�
�

which is just ������� with �G�stable� substituted for �stable��
For the SASS ��DOF control system� the speci�cation HG�stable can be expressed

in terms of the interpolation conditions described in section ������ with the following
modi�cations� condition ��� becomes �T is G�stable�� and the list of poles and zeros
of P� must be expanded to include any poles and zeros that are G�unstable� i�e�� lie
in the right�hand region in �gure �����
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There is a free parameter representation of HG�stable�

HG�stable � fT� � T�QT� j Q is a G�stable nu � ny transfer matrixg �

which is ������ with �G�stable� substituted for �stable�� This free parameter rep�
resentation can be developed from state�space equations exactly as in section ����
provided the state�feedback and estimator gains are chosen such that AP �BuKsfb

and AP � LestCy are G�stable� i�e�� their eigenvalues lie in the left�hand region of
�gure �����
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Notes and References

Realizability

Freudenberg and Looze �FL��� refer to some of the realizability constraints �e�g�� S �
T � � in the classical ��DOF control system� as algebraic constraints on closed�loop
transfer functions� In contrast� they refer to constraints imposed by stability of T and the
interpolation conditions as analytic�

Internal Stability

Arguments forbidding unstable pole�zero cancellations can be found in any text on classical
control� e�g� �Oga��� p��������� For MAMS plants� �nding a suitable de�nition of a zero
is itself a di�cult task� so this classical unstable cancellation rule was not easily extended�
An extensive discussion of internal stability and state�space representations can be found
in Kailath �Kai��� p���� or Callier and Desoer �CD�	a��

Desoer and Chan�s de�nition appears in �DC���� Their de�nition has been widely used
since� e�g�� in �Fra��� p������ and �Vid��� p��������

Parametrization for Stable Plants

The parametrization given in ������ appears for example in the articles �Zam���� �DC��a��
�BD���� and chapter � of Callier and Desoer �CD�	a�� In process control� the parametriza�
tion is called the internal model principle� since the controller K in �gure ��� contains a
model of Pyu� see Morari and Za�rou �MZ��� ch
���

Parametrization via Interpolation Conditions

An early version of the interpolation conditions appears in Truxal�s ��

 book �Tru���
p��������� There he states that if P� has an unstable zero� so should the closed�loop I�O
transfer function T � He does not mention unstable plant poles� and his reasoning is not
quite right �see �BBN�����

The �rst essentially correct and explicit statement of the interpolation conditions appears
in a ��
� paper by Bertram on discrete�time feedback control �Ber���� He states�

In summary� for �the classical SASS ��DOF control system�� the following
design restrictions must be considered�

� Any zeros of the plant on or outside the unit circle in the z�plane must
be contained in �T �z���

� Any poles of the plant on or outside the unit circle in the z�plane must
be contained in ��� T �z���

He does not explicitly state that these conditions are not only necessary� but also su�cient
for closed�loop stability� but it is implicit in his design procedure�

Another early exposition of the interpolation conditions can be found in chapter � of
Ragazzini and Franklin�s ��
� book �RF��� p��������� The equivalent interpolation
conditions for continuous�time systems �rst appear in a ��
� paper by Bigelow �Big����

A recent paper that uses the interpolation conditions is Zames and Francis �ZF���� Inter�
polation conditions for MAMS plants appear in �AS����
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Parametrization for MAMS Plants

The results on parametrization of achievable closed�loop transfer matrices in the multiple�
actuator� multiple�sensor case depend on factorizations of transfer matrices� Early treat�
ments use factorization of transfer matrices in terms of matrices of polynomials� see
e�g�� �Ros��� and �Wol���� extensive discussion appears in �Kai���� The �rst parametriza�
tion of closed�loop transfer matrices that can be achieved with stabilizing controllers ap�
pears in Youla� Jabr� and Bongiorno�s articles on Wiener�Hopf design �YJB��� YBJ����
For discrete�time systems� the parametrization appears in the book by Ku�cera �Kuc����

A more recent version of the parametrization uses factorization in terms of stable trans�
fer matrices� and appears �rst in Desoer� Liu� Murray and Saeks �DLM���� The book
by Vidyasagar �Vid��� ch
���� contains a complete treatment of the parametrization of
achievable closed�loop transfer matrices in terms of stable factorizations� A state�space
parametrization can be found in Francis �Fra��� ch
�� or Vidyasagar �Vid����

Parametrization Using Observer-Based Controller

The observer�based controller parametrization was �rst pointed out by Doyle �Doy���� it
also appears in Anderson and Moore �AM��� x�
	�� Maciejowski �Mac��� x�
��� and a
recent article by Moore� Glover� and Telford �MGT����

Why We Hear So Much About Stability

We mentioned in section ����� that any sensible set of design speci�cations will constrain
the four critical transfer matrices more tightly than merely requiring stability� For example�
the speci�cations may include speci�c �nite limits on some norm of the four critical transfer
matrices� such as

kHu��k� � a��� kHu��k� � a��� kHy��k� � a��� kHy��k� � a��� ���
��

whereas internal stability only requires that these norms be �nite�

kHu��k� ��� kHu��k� ��� kHy��k� ��� kHy��k� ��� ���
	�

In any particular problem� a design in which these transfer matrices are extremely large but
stable is just as unacceptable as a design in which one or more of these transfer matrices
is actually unstable� So in any particular problem� the �qualitative� �a�ne� speci�cation
of internal stability ���
	� will need to be replaced by a stronger �quantitative� �convex
but not a�ne� speci�cation such as ���
���

We see so much discussion about the qualitative speci�cation of internal stability for
historical reasons� In Newton� Gould� and Kaiser �NGK��� p	�� we �nd

In the classical view� a feedback control problem could be identi�ed almost
always as a stability problem� To the early workers in the �eld� the problem
of assuring stability was nearly always the foremost consideration� � � � �A bad
controller� caused the system to exhibit sustained oscillations of the output
even though the input was quiescent� This phenomenon� often called hunting�
so plagued the control engineer that even to the present time ���
�� it has all
but dwarfed the many other aspects of the feedback control problem�

In Black �Bla��� we �nd
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It is far from a simple proposition to employ feedback in this way because of
the very special control required of phase shifts in the ampli�er and circuits�
not only throughout the useful frequency band but also for a wide range of
frequencies above and below this band� Unless these relations are maintained�
singing will occur� usually at frequencies outside the useful range� Once hav�
ing achieved a design� however� in which proper phase relations are secured�
experience has demonstrated that the performance obtained is perfectly reli�
able�



Chapter 8

Performance Specifications

In this chapter we consider in detail performance speci�cations� which limit the
response of the closed�loop system to the various commands and disturbances
that may act on it� We show that many of these performance speci�cations are
closed�loop convex�

We organize our discussion of performance speci�cations by their meaning or pur�
pose �in the context of controller design�� and not by the mathematical form of
the constraints� In fact we shall see that performance speci�cations with di�erent
meanings� such as a limit on errors to commands� a minimum acceptable level of
regulation� and a limit on actuator e�ort� can be expressed in similar forms as lim�
its on the size of a particular submatrix of the closed�loop transfer matrix H� For
this reason our discussion of these types of speci�cations will become briefer as the
chapter progresses and the reader can refer back to chapter � or other speci�cations
that have a similar form�
To facilitate this organization of performance speci�cations by meaning� we par�

tition the exogenous input vector w as follows�

w �

�
� wc

wd

wetc

�
� l nc commands

l nd disturbances
other components of w

The nc components of wc are the command� reference� or set�point signals�the
�input� in classical control terminology� The nd components of wd are the dis�
turbance or noise signals� The vector signal wetc contains all remaining exogenous
inputs�some of these signals will be discussed in chapter ���
We partition the regulated variables�

z �

�
���
zc
za
zo
zetc

�
���

l nc commanded variables
l na actuator signals
l no other critical signals

other components of z

171
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The nc components of zc are the regulated variables that the commands wc are
intended to control or regulate�the �output� in classical control terminology� The
na components of za are the actuator signals� which we remind the reader must be
included in z in any sensible formulation of the controller design problem� The no
components of zo are other critical signals such as sensor signals or state variables�
The vector signal zetc contains all remaining regulated variables�
We conformally partition the closed�loop transfer matrix H��

���
zc
za
zo
zetc

�
��� �

�
���

Hcc Hcd �
Hac Had �
Hoc Hod �
� � �

�
���
�
� wc

wd

wetc

�
� �

The symbol � is used to denote a submatrix of H that is not used to formulate
performance speci�cations �some of these submatrices will be used in chapter ����
In the next few sections we consider speci�cations on each of the other submatrices
of H� We remind the reader that a convex or a�ne speci�cation or functional on a
submatrix of H corresponds to a convex or a�ne speci�cation or functional on the
entire matrix H �see section 
���	��

8.1 Input/Output Specifications

In this section we consider speci�cations on Hcc� the closed�loop transfer matrix
from the command or set�point inputs to the commanded variables� i�e� the variables
the commands are intended to control� In classical control terminology� Hcc consists
of the closed�loop I
O transfer functions� Of course� it is possible for a control
system to not have any command inputs or commanded variables �nc � ��� e�g� the
classical regulator�
The submatrix Hcc determines the response of the commanded variables zc to

the command inputs wc only � zc will in general also be a�ected by the disturbances
�wd� and the other exogenous input signals �wetc� �these e�ects are considered in the
next section�� Thus� the signal Hccwc is the noise�free response of the commanded
variables� In this section� we will assume for convenience that wd � �� wetc � ��
so that zc � Hccwc� In other words� throughout this section zc will denote the
noise�free response of the commanded variables�

8.1.1 Step Response Specifications

Speci�cations are sometimes expressed in terms of the step response of Hcc� espe�
cially when there is only one command signal and one commanded variable �nc � ���
The step response gives a good indication of the response of the controlled variable
to command inputs that are constant for long periods of time and occasionally
change quickly to a new value �sometimes called the set�point�� We �rst consider
the case nc � �� Let s�t� denote the step response of the transfer function Hcc�
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Asymptotic Tracking

A common speci�cation on Hcc is

lim
s��

s�t� � Hcc��� � ��

which means that for wc constant �and as mentioned above� wd � �� wetc � ���
zc�t� converges to wc as t 
 �� or equivalently� the closed�loop transfer function
from the command to the commanded variable is one at s � �� We showed in
section 
���� that the speci�cation

Hasympt trk � fH j Hcc��� � �g

is a�ne� since the functional

��H� � Hcc���

is a�ne�

A strengthened version of asymptotic tracking is asymptotic tracking of order

k� Hcc��� � �� H
	j

cc ��� � �� � � j � k� This speci�cation is commonly encountered

for k � � and k � �� and referred to as �asymptotic tracking of ramps� or �zero
steady�state velocity error� �for k � �� and �zero steady�state acceleration error�
�for k � ��� These higher order asymptotic tracking speci�cations are also a�ne�

Overshoot and Undershoot

We de�ne two functionals of Hcc� the overshoot�

�os�Hcc�
�
� sup

t��
s�t�� ��

and the undershoot�

�us�Hcc�
�
� sup

t��
�s�t��

Figure ��� shows a typical step response and the values of these functionals�

These functionals are convex� so the speci�cations

Hos
�
� fH j �os�Hcc� � �g �

Hus
�
� fH j �us�Hcc� � �g

are convex� for example� if each of two step responses does not exceed �� overshoot
�� � ���� then neither does their average �see section 
���� and �gure 
�
��
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s�
t�

t

�us

�os

� � � � � � 	 
 � � ��
����

����

�

���

���

��	

���

�

���

���

Figure ��	 A typical step response s and its overshoot ��os� and under�
shoot ��us�� The asymptotic tracking speci�cation Hasympt trk requires that
the step response converge to one as t���

The functionals �os and �us are usually used together with the asymptotic track�
ing constraintHasympt trk� otherwise we might use the relative overshoot and relative
undershoot de�ned by

�ros�Hcc�
�
�

	�
�
sup
t��

s�t��Hcc���� � if Hcc��� 	 ��

�� if Hcc��� � ��

�rus�Hcc�
�
�

	�
�
sup
t��

�s�t��Hcc��� if Hcc��� 	 ��

�� if Hcc��� � ��

It is less obvious that the speci�cations

Hros
�
� fH j �ros�Hcc� � �g � �����

Hrus
�
� fH j �rus�Hcc� � �g �����

are convex� To see that the relative overshoot constraint Hros is convex� we rewrite
it as

Hros � fH j Hcc��� 	 �� s�t�� �� � ��Hcc��� � � for all t � �g �

If H� �H � Hros and � � � � �� then H� � �H � �� � �� �H satis�es H�cc��� 	 ��
and for each t � � we have s�t�� �� � ��H�cc��� � �� Hence� H� � Hros�
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Since the functional inequality speci�cations ��������� are convex for each ��
the relative overshoot and relative undershoot functionals are quasiconvex � they are
not� however� convex� If one step response� s�t�� has a relative overshoot of 	� �
and another step response �s�t� has a relative overshoot of �� � then their average
has a relative overshoot not exceeding 	� � but it may exceed �� � the average
of the two relative overshoots� An example of two such step responses is shown in
�gure ����

t

���
s

���
�s

�
�
��

�s� �s���

� � � � � � 	 
 � � ��
�

���

�

���

�

���

�

Figure ��� The relative overshoot of the step responses s and �s are 	��
and ��� respectively� Their average� �s � �s���� has a relative overshoot of
�	�� This example shows that relative overshoot is not a convex functional
of H� It is� however� quasiconvex�

Rise Time and Settling Time

There are many de�nitions of rise time and settling time in use� we shall use

�rise�Hcc�
�
� inffT j s�t� 	 ��� for t � Tg�

�settle�Hcc�
�
� inffT j js�t�� �j � ���� for t � Tg�

as illustrated in �gure ��	� The functional �rise is usually used together with the
asymptotic tracking speci�cation Hasympt trk� we can also de�ne relative or normal�
ized rise time�
The functional inequality speci�cations

Hrise
�
� fH j �rise�Hcc� � Tmaxg �
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s�
t�

t

���
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���
�settle

� � � � � � 	 
 � � ��
�
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��	

���

�

���

���

Figure ��� The value of the rise�time functional� �rise� is the earliest time
after which the step response always exceeds ���� The value of the settling�
time functional� �settle� is the earliest time after which the step response is
always within 
� of ����

Hsettle
�
� fH j �settle�Hcc� � Tmaxg

are convex� if two step responses each settle to with � within some time limit
Tmax� then so does their average� Thus� the rise�time and settling�time functionals
�rise and �settle are quasiconvex� i�e��

�rise��Hcc � ��� �� �Hcc� � maxf�rise�Hcc�� �rise� �Hcc�g

for all � � � � �� but we do not generally have

�rise��Hcc � ��� �� �Hcc� � ��rise�Hcc� � ��� ���rise� �Hcc��

so they are not convex� Figure ��� demonstrates two step responses for which this
inequality� with � � ���� is violated�
We mention that there are other de�nitions of rise�time functionals that are not

quasiconvex� One example of such a de�nition is the time for the step response to
rise from the signal level ��� ��� � to ��� ��� ��

����
��Hcc�
�
� infft j s�t� � ���g � infft j s�t� � ���g�

While this may be a useful functional of Hcc in some contexts� we doubt the utility
of the �nonconvex� speci�cation ����
��Hcc� � Tmax� which can be satis�ed by
a step response with a long initial delay or a step response with very large high
frequency oscillations�
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��	

���

�

���

Figure ��� The rise times of the step responses s and �s are 
�� and ���
seconds respectively� Their average� �s��s���� has a rise time of 	�	� � 
����
seconds� This example shows that rise time is not a convex functional of H�
although it is quasiconvex�

General Step Response Envelope Specifications

Many of the step response speci�cations considered so far are special cases of general
envelope constraints on the step response�

Henv � fH j smin�t� � s�t� � smax�t� for all t � �g � ���	�

where smin�t� � smax�t� for all t � �� An example of an envelope constraint is shown
in �gure ���� The envelope constraint Henv is convex� since if two step responses lie
in the allowable region� then so does their average�
We mention one useful way that a general envelope constraint Henv can be

expressed as a functional inequality speci�cation with a convex functional� We
de�ne the maximum envelope violation�

�max env viol�Hcc�
�
� sup

t��
max fs�t�� smax�t�� smin�t�� s�t�� �g �

The envelope speci�cation Henv can be expressed as

Henv � fH j �max env viol�Hcc� � � g �

General Response-Time Functional

The quasiconvex functionals �rise and �settle are special cases of a simple� general
paradigm for measuring the response time of a unit step response� Suppose that we
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Figure ��� General envelope speci�cation on a step response� The two step
responses s� and s� satisfy this constraint� their average �shown in dashed
line� also satis�es the envelope constraint�

have upper and lower bounds for a general envelope constraint� smax�t� and smin�t��
Suppose that smax�t� does not increase� and smin�t� does not decrease� for increasing
t� For each T 	 �� we consider the time�scaled envelope speci�cation

smin�t�T � � s�t� � smax�t�T � for all t � �� �����

����� de�nes a nested family of convex speci�cations� parametrized by T � For T � �
we have the original envelope speci�cation with bounds smin and smax� for T 	 �
we have a weaker speci�cation� and for T � � we have a stronger speci�cation�
roughly speaking� T is the normalized response time� We de�ne the generalized
response�time functional as

�grt�Hcc�
�
� inf fT j smin�t�T � � s�t� � smax�t�T � for all t � �g �

This construction is shown in �gure ��
� The comments at the end of section 
����
show that �grt is quasiconvex�

Step Response Interaction

We now consider the case where there are multiple commands �and multiple com�
manded variables� so that Hcc is an nc � nc transfer matrix� where nc 	 �� Its
diagonal entries are the transfer functions from the command inputs to their associ�
ated commanded variables� which may be required to meet the various speci�cations
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Figure ��� A step response is shown together with the envelopes smin�t�T �
and smax�t�T � for three values of T � where smin�t� � � � ��� exp�t and
smax�t� � � � exp�t� For T � ��� the step response just lies inside the
envelopes� so the value of �grt is ����

discussed above� e�g�� limits on overshoot or rise time� The o��diagonal entries of
Hcc are the transfer functions from the commands to other commanded variables�
and are called the command interaction transfer functions� It is generally desir�
able that these transfer functions be small� so that each command input does not
excessively disturb the other commanded variables�
Let s�t� denote the step response matrix of Hcc� One mild constraint on com�

mand interaction is asymptotic decoupling �

Hasympt dcpl �
n
H

��� Hcc��� � lim
t��

s�t� is diagonal
o
� �����

This speci�cation ensures that if the commands are constant� then the e�ect on
each commanded variable due to the other commands converges to zero� there is
no steady�state interaction for constant commands�
A stronger speci�cation that limits command interaction is an envelope con�

straint on each entry of s�t��

Hmimo env � fH j smin�t� � s�t� � smax�t� for all t � �g � ���
�

where smin�t� and smax�t� are matrices� and the inequalities in ���
� are component
by component� The envelope speci�cation Hmimo env is convex�
An example of Hmimo env is shown in �gure ���� along with a step matrix s�t�

that meets it� Of course� the responses shown in �gure ��� are for steps applied to
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Figure ��� Design speci�cations requiring the decoupling of responses to
step commands�

the inputs one at a time� Figure ��� shows the response of the commanded variables
to a particular command signal that has a set�point change in w� at t � ��� and
then a set�point change in w� at t � ���� The perturbation in z� right after t � ���
and the perturbation in z� right after t � ��� are due to command interaction�
The speci�cation Hmimo env limits this perturbation� and guarantees that after the
set�point change for z�� for example� the e�ect on z� will fade away�

An extreme form of Hmimo env is to require that the o��diagonal step responses
be zero� or equivalently� that Hcc be diagonal� This is called exact or complete

decoupling �

Hdcpl � fH j Hcc is diagonal g �

This speci�cation forbids any command interaction at all� regardless of the com�
mand signals� Hdcpl is a�ne�
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Figure ��� An example of command interaction in a two�input� two�output
system� The individual step responses of the system are shown in �gure ����
Output z� tracks a step change in the command signal w�� However� z�
is perturbed by a step change in the command signal w�� Similarly� z� is
perturbed by a step change in w��

Miscellaneous Step Response Specifications

Other speci�cations often expressed in terms of the step response of Hcc include
monotonic step response and I
O slew�rate limits� The monotonic step response
constraint is

Hmono sr � fH j s�t� is nondecreasing for all t � �g

� fH j h�t� � � for all t � �g

where h�t� is the impulse response of Hcc� Thus� Hmono sr requires that the com�
manded variable move only in the direction of the new set�point command in re�
sponse to a single abrupt change in set�point� Hmono sr is a stricter speci�cation
than requiring that both the undershoot and overshoot be zero� Hmono sr is convex�
A related speci�cation is a slew�rate limit on the step response�

Hslew sr �

�
H

����
���� ddts�t�

���� � jh�t�j �Mslew for all t � �

�
�

Response to Other Inputs

We close this section by noting that the response of zc to any particular command
signal� and not just a unit step� can be substituted for the step response in all of
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the speci�cations above� This speci�c input tracking requirement is convex�
For example� we may require that in response to the particular command signal

wc � wpgm� shown in �gure ���� the commanded variable zc lies in the envelope
shown� wpgm might represent an often repeated temperature cycle in an industrial
oven �the mnemonic abbreviates �program��� The speci�cation

Hpgm trk � fH j kHccwpgm � wpgmk� � 	�g �

shown in �gure ���� requires that the actual temperature� zc� always be within 	�
�C

of the commanded temperature� wc�

T
��
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� � � � � � 	 
 � � ��
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Figure ��� An example of a temperature command signal that might be
used in a plastics process� Powder is slowly melted� and then sintered for
	 hours� It is then rapidly cooled through the melt point� The envelope
constraints on the actual temperature require the temperature error to be
less than 	��C�

8.1.2 Tracking Error Formulation

Step response speci�cations constrain the response of the system to speci�c com�
mands� a step input at each command� By linearity and time�invariance� this
constrains the response to commands that are constant for long periods and change
abruptly to new values� which is sometimes a suitable model for the commands that
will be encountered in practice� In many cases� however� the typical command sig�
nals are more diverse�they may change frequently in a way that is not completely
predictable� This is often the case in a command�following system� where the goal
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is to have some system variables follow or track a continuously changing command
signal�

In the tracking error formulation of I
O speci�cations� we de�ne the tracking

error as etrk
�
� zc�wc� the di�erence between the actual response of the commanded

variables and the commands� as shown in �gure �����
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Figure ��	
 An architecture for expressing I�O speci�cations in terms of
the tracking error etrk � zc � wc�

We will assume that etrk is available as a part of z� and Htrk will denote the
submatrix of H that is the closed�loop transfer matrix from the commands wc to
the tracking errors etrk� A general tracking error speci�cation has the form

Htrk
�
� fH j kHtrkktrk err � � g � �����

i�e�� the closed�loop transfer matrix from commands to tracking error should be
small� as measured with the norm k�ktrk err� Using any of the norms from chapter �
allows a wide variety of I
O speci�cations to be formed from the general tracking
error speci�cation Htrk� all of which are convex� We will brie�y list some of these
speci�cations and their interpretations�

RMS Mistracking Limit

One simpli�ed model of the command signal is that it is a stochastic process with a
known power spectrum Scmd� Of course this model is quite crude� and only intended
to capture a few key features of the command signal� such as size and bandwidth�
the command signal may in fact be generated by a human operator� If we accept
this model� and take the RMS value as our measure of the size of the tracking
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error� the general tracking speci�cation ����� can be expressed as the weighted H�

norm�bound

Hrms trk
�
� fH j kHtrkWk� � � g � �����

where W is a spectral factor of Scmd� Scmd�
� �W �j
��W �j
��

Worst Case RMS Mistracking Limit

We may reduce our a priori assumptions about the command signal even further�
by assuming that we do not know the spectrum� but know only a maximum Wcmd�
weighted RMS value for the command signal wc� where Wcmd is some appropriate
weight� If our measure of the size of the tracking error etrk is the worst case Wtrk�
weighted RMS value it might have� whereWtrk is some appropriate weight� then the
appropriate norm in the general tracking error speci�cation ����� is the weighted
H� norm�

Hhinf trk
�
� fH j kWtrkHtrkWcmdk� � � g � �����

For nc � � �meaning the weights are scalar� and the maximum singular value of the
transfer function is simply its magnitude�� this speci�cation can also be cast in the
more classical form�

Hhinf trk � fH j jHtrk�j
�j � ltrk�
�� Htrk is stable g ������

where

ltrk�
� �
�

jWcmd�j
�Wtrk�j
�j
�

The classical interpretation is that ltrk�
� is a frequency�dependent limit on the
tracking error transfer function� and the speci�cation ������ ensures that the �com�
mand to tracking error transfer function is small at those frequencies where the
command has signi�cant energy�� An example is shown in �gure �����

Worst Case Peak Mistracking Limit

Another speci�c form that the general tracking error speci�cation ����� can take is
a worst case peak mistracking limit�

Hpk trk
�
� fH j kHtrkkpk gn � �g � ������

This speci�cation arises as follows� We use an unknown�but�bounded model of the
command signals� we assume only

kwck� �M� ������
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Figure ��		 Upper bounds on frequency response magnitudes are convex�
The bound l��� on the tracking error transfer function ensures that the
tracking error transfer function is below ���dB at frequencies below ��Hz�
and rolls o� below �Hz� Two transfer functions Htrk and �Htrk that satisfy
the speci�cation ������ are shown� together with their average� Of course�

the magnitude of �Htrk � �Htrk��� is not the average of the magnitudes of

Htrk and �Htrk� although it is no larger than the average�

Our measure of the tracking error is the worst case peak �over all command signals
consistent with ������� of the tracking error etrk�

ketrkk� �Mtrk whenever wc satis�es ������ �

This constraint is precisely ������� with � �Mtrk�M �

Since most plants are strictly proper� kHtrkkpk gn will usually be at least one�
This can be seen from the block diagram in �gure ����� a step change in the
command input wc will produce an immediate� equal sized change in the tracking
error� After some time� the closed�loop system will drive the tracking error to a
smaller value� For this reason� the speci�cation ������ may not be useful�

A useful variation on this worst case peak tracking error limit is to assume more
about the command signals� for example� to assume a maximum slew rate as well
as a maximum peak for the command signal� In this case the appropriate norm in
the general tracking error limit ����� would be the worst case norm k � kwc� from
section ������

For example� consider the temperature response envelope shown in �gure ����
Provided the system achieves asymptotic tracking of constant commands� so that
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Htrk��� � �� we can ignore the o�set in the command signal� Since kwc � ���k� �
����C and k �wck� � 	���C
Hr� we can specify

Hpk trk slew
�
� fH j kHtrkkwc � 	�

�Cg � ����	�

where we take Mampl � ����C and Mslew � 	���C
Hr in the de�nition of the
norm k �kwc �see section ������� The speci�cation ����	� is tighter than the envelope
speci�cation in �gure ���� the speci�cation ����	� requires a peak tracking error of
no more than 	��C for any command input that is between ����C and ����C� and
slew limited by 	���C
Hr� while the speci�cation in �gure ��� requires the same
peak tracking error for a particular input that is between ����C and ����C� and
slew limited by 	���C
Hr�

8.1.3 Model Reference Formulation

An extension of the tracking error formulation consists of specifying a desired closed�
loop I
O transfer matrix Href des� called the reference or model transfer matrix�
and the goal is to ensure that Hcc � Href des� Instead of forming the tracking error
as etrk � zc � wc� we form the model reference error emre � zc � Href deswc� the
di�erence between the actual response zc and the desired response� Href deswc� This
is shown in �gure ����� Note that the tracking error is just the model reference error
when the model transfer matrix is the identity�
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Figure ��	� An architecture for expressing I�O speci�cations in terms of
the error from a desired transfer matrix Href des�

We will assume that the model reference error emre is contained in z� Let Hmre

denote the submatrix ofH that is the closed�loop transfer matrix from the command
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signal wc to the model reference error emre� In the model reference formulation of
I
O speci�cations� we constrain Hmre to be small in some appropriate sense�

Hmre
�
� fH j kHmrekmre � � g � ������

The general model reference error speci�cation ������ can take a wide variety of
forms� depending on the norm used� we refer the reader to section ����� for a partial
list� and chapter � for a general discussion�

8.2 Regulation Specifications

In this section we consider the e�ect on zc of wd only� just as in the previous
sections we considered the e�ect on zc of the command inputs only� The response
of commanded variables to disturbances is determined by the closed�loop submatrix
Hcd� regulation speci�cations require that Hcd be �small�� It is not surprising� then�
that regulation speci�cations can usually be expressed in the form of norm�bound
inequalities� i�e��

kHcdkreg � �� ������

where k � kreg is some appropriate norm that depends� for example� on the model
of the disturbances� how we measure the size of the undesired deviation of the
commanded variables� and whether we limit the average or worst case deviation�
In the following sections we describe a few speci�c forms the general regulation

speci�cation ������ can take� Because these speci�cations have a form similar to
I
O speci�cations such as limits on tracking error or model reference error� we will
give a briefer description� For convenience we shall assume that wd is a scalar
disturbance and wc is a single commanded variable� since the extension to vector
disturbance signals and regulated variables is straightforward�

8.2.1 Rejection of Specific Disturbances

The simplest model for a disturbance is that it is constant� with some unknown
value� The speci�cation that this constant disturbance be asymptotically rejected
at zc is simply

Hasympt rej � fH j Hcd��� � �g �

This speci�cation has the same form as the asymptotic decoupling speci�cation �����
�and is therefore closed�loop a�ne�� but it has a very di�erent meaning� The speci�
�cation Hasympt rej can be tightened by limiting the step response of Hcd to lie in a
given envelope� as in the command response speci�cations discussed in section ����
For example� we may require that the e�ect of a unit step input at wd on zc should
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decay to no more than ���� within some given time Trej� Such a speci�cation en�
sures that the closed�loop system will counteract the e�ects of a rapidly applied �or
changed� constant disturbance on the commanded variable�
In most cases� however� disturbances cannot be so easily described� In the next

few sections we discuss speci�cations that limit the e�ect of disturbances about
which less is known�

8.2.2 RMS Regulation

A common model for a disturbance is a stochastic process with a known power
spectral density Sdist� The speci�cation

Hrms reg
�
� fH j kHcdWk� � �g � ����
�

where W is a spectral factor of Sdist� limits the RMS deviation of the commanded
variable �due to the disturbance� to be less then �� This speci�cation has exactly
the same form as the RMS mistracking limit ������ a weighted H� norm�bound�
The power spectral density of the disturbance is rarely known precisely� Sdist

is usually meant to capture only a few key features of the disturbance� perhaps its
RMS value and bandwidth� The power spectral density

Sdist�
� �
�a�
bw

� � 
�

bw

�

for example� might be used to model a disturbance with an RMS value a and a
bandwidth 
bw�

8.2.3 Classical Frequency Domain Regulation

We may not be willing to model the disturbance with a speci�c power spectral
density� Instead� we may model wd as having an unknown power spectral density�
but some given maximum RMS value� A limit on the worst case RMS response of
zc can be expressed as the H� norm�bound

Hhinf reg
�
� fH j kHcdk� � � g �

which limits the RMS gain of the closed�loop transfer function Hcd� Often� this
speci�cation is modi�ed by frequency domain weights� re�ecting the fact that either
a maximum possible weighted�RMS value for the disturbance is assumed� or a limit
on some weighted�RMS value of the commanded variable must be maintained� Such
a frequency�weighted H� norm�bound can be cast in the more classical form�

Hhinf reg � fH j jHcd�j
�j � lreg�
�� Hcd is stable g � ������

The classical interpretation is that lreg�
� is a frequency�dependent limit on the
disturbance to commanded variable transfer function� and the speci�cation ������
ensures that the �disturbance to commanded variable transfer function is small at
those frequencies where the disturbance has signi�cant energy��
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8.2.4 Regulation Bandwidth

The classical frequency domain regulation speci�cation ������ is often expressed as
minimum regulation bandwidth for the closed�loop system� One typical de�nition
of the regulation bandwidth of the closed�loop system is

�bw�Hcd�
�
� sup f! j jHcd�j
�j � ��� for all 
 � !g �

which is the largest frequency below which we can guarantee that the disturbance
to commanded variable transfer function is no more than ���dB� as shown in
�gure ���	�
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Figure ��	� The value of the regulation bandwidth functional� �bw� is
the largest frequency below which the disturbance to commanded variable
transfer function� Hcd� is no more than ���dB�

The minimum bandwidth speci�cation

Hmin bw
�
� fH j �bw�Hcd� � !ming

is convex� since it is a frequency�dependent bound on the magnitude of H� so
the bandwidth functional �bw is quasiconcave� meaning that ��bw is quasiconvex�
Alternatively� we note that the inverse of the regulation bandwidth� i�e�� ���bw�
is quasiconvex� The inverse bandwidth ���bw can be interpreted as a regulation
response time�
A generalized de�nition of bandwidth� analogous to the generalized response

time� is given by

�gbw�Hcd�
�
� sup f! j jHcd�j
�j �M�
�!� for all 
g �
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where M��� is a non�decreasing frequency�dependent magnitude bound�

8.2.5 Worst Case Peak Regulation

If we model the disturbance as unknown�but�bounded� say� kwdk� � Md� and
require that the worst case peak deviation of the commanded variable due to wd is
less than Mmax pk reg� i�e��

kHcdwdk� �Mmax pk reg whenever kwdk� �Md�

then we can specify the peak�gain bound

Hpk dis
�
� fH j kHcdkpk gn �Mmax pk reg�Md g �

8.3 Actuator Effort

In any control system the size of the actuator signals must be limited� i�e��

kukact �Mact

for some appropriate norm k � kact and limit Mact� Reasons include�

� Actuator heating� Large actuator signals may cause excessive heating� which
will damage or cause wear to the system� Such constraints can often be
expressed in terms of an RMS norm of u� possibly with weights �see sec�
tion �������

� Saturation or overload� Exceeding absolute limits on actuator signals may
damage an actuator� or cause the plant P to be a poor model of the system
to be controlled� These speci	cations can be expressed in terms of a scaled or
weighted peak norm of u�

� Power� fuel� or resource use� Large actuator signals may be associated with
excessive power consumption or fuel or resource use� These speci	cations are
often expressed in terms of a scaled or weighted average�absolute norm of u�

� Mechanical or other wear� Excessively rapid changes in the actuator signal
may cause undesirable stresses or excessive wear� These constraints may be
expressed in terms of slew rate� acceleration� or jerk norms of u �see sec�
tion ����
��

These limits on the size of u can be enforced by limiting in an appropriate way
the size of Hac and Had� the closed�loop transfer matrices from the command and
disturbance signals to the actuator� For example� if the command signal is modeled
as a stochastic process with a given power spectral density� then a weighted H�

norm�bound on Hac will guarantee a maximum RMS actuator e�ort due to the
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command signal� If the command signal is modeled as unknown�but�bounded� and
the peak of the actuator signal must be limited� then the actuator e�ort speci	cation
is a limit on the peak gain of Hac� These speci	cations are analogous to many we
have already encountered in this chapter�

We mention one simple but important distinction between a limit on the size of
u and the associated limit on the size of Hac �or Had�� We will assume for simplicity
that the command and actuator signals are scalar� and the disturbance is negligible�
Suppose that we have the constraint

kuk� � � �
��
�

on our actuator signal �perhaps� an ampli	er driving a DC motor saturates�� and
our command signal is constant for long periods of time� and occasionally changes
abruptly to a new set�point value between �� and �� We can ensure that �
��
�
holds for all such command signals with the closed�loop convex design speci	cation

�kHackpk step � �� �
��
�

This speci	cation ensures that even with the worst case full�scale set�point changes�
from �� to � and vice versa� the peak of the actuator signal will not exceed one�
By linearity� the speci	cation �
��
� ensures that a set�point change from ���� to
��� will yield an actuator signal with kuk� � ���� Roughly speaking� for such a
set�point change we are only making use of ��� of our allowable actuator signal
size� this may exact a cost in� say� the time required for the commanded variable to
converge to within ���� of the 	nal value ����

This is illustrated in 	gure 
���� which shows two command signals and the
associated actuator signals in a control system that satis	es the speci	cation �
��
��
The command signal w in 	gure 
����a� is one of the worst case� full�scale set�
point changes� and causes the actuator signal u� shown in 	gure 
����b�� to nearly
saturate� The command �w in 	gure 
����c�� however� results in the actuator signal
in 	gure 
����d�� which uses only �
� of the allowable actuator capability�

8.4 Combined Effect of Disturbances and Commands

So far we have treated command inputs and disturbances separately� the speci	ca�
tions we have seen constrain the behavior of the closed�loop system when one� but
not both� of these exogenous inputs acts� As a simple example� assume that the
system has a single command input� a single disturbance� and a single actuator� so
that nc � nd � na � �� Consider the two speci	cations

Henv � fH j smin�t� � s�t� � smax�t� for all t � �g �

Hrms act � fH j kHadk� � �g �

The 	rst speci	cation requires that the step response from wc to zc lie inside the
envelope given by smin and smax� as in 	gure 
��� This means that the commanded
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Figure ���� The speci�cation ������ ensures that the actuator signal mag�
nitude will not exceed one during set�point changes in the range �� to ��
The input w in �a� shows a set�point change that drives the actuator sig�
nal	 shown in �b�	 close to its limit� Because of linearity	 smaller set�point
changes will result in smaller actuator e
ort� the set�point change �w in �c�
produces the actuator signal �u in �d�	 which only uses ��
 of the available
actuator e
ort�
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variable zc will lie in the given envelope when a step input is applied to wc and the

disturbance input is zero� The second speci	cation requires that the RMS value of
the actuator u be less than one when white noise is applied to wd and the command

input is zero� If a unit step command input is applied to wc and a white noise is
applied to wd simultaneously� the response at zc is simply the sum of the responses
with the inputs acting separately� It is quite likely that this zc would not lie in the
speci	ed envelope� because of the e�ect of the disturbance wd� similarly the RMS
value of u would probably exceed one because of the constant component of the
actuator signal that is due to the command�

This phenomenon is a basic consequence of linearity� These separate speci	ca�
tions often su�ce in practice since each regulated variable may be mostly dependent
on either the command or disturbances� For example� in a given system the distur�
bance may be small� so the component of the actuator signal due to the disturbance
�i�e�� Hadwd� may be much smaller than the component due to the command �i�e��
Hacwc�� therefore an actuator e�ort speci	cation that limits the size of Hac will
probably acceptably limit the size of u� even though it �ignores� the e�ect of the
disturbance�

We can also describe this phenomenon from a more general viewpoint� Each
speci	cation we have considered so far is a speci	cation on some submatrix of H
that does not contain all of its columns� and therefore considers the e�ects of only a
subset of the exogenous inputs� In contrast� a speci	cation on a submatrix ofH that
contains all of its columns will consider the e�ects of all of the exogenous inputs�
acting simultaneously� For example� the RMS actuator e�ort speci	cation Hrms act

involves only the submatrix Had� and does not consider the e�ect of the command
on the RMS value of the actuator signal� On the other hand� the speci	cation

Hrms act cmb
�
�

�
H

����
q
kHadk�� �Hac���� � �

�
�

which is a speci	cation on the bigger submatrix �Hac Had� ofH� correctly guarantees
that the RMS value of u will not exceed one when the command is a unit step and
the disturbance is a white noise �and� we should add� wetc � ���

This discussion suggests that a general actuator e�ort speci	cation should really
limit the size of the transfer matrix �Hac Had�� Limiting the sizes of Hac and Had

separately will� of course� limit the size of �Hac Had�� this corresponds to a prior

allocation of actuator e�ort between regulation and command�following tasks�

In cases where di�erent types of models for the commands and disturbances are
used �or indeed� di�erent types of models for di�erent components of either�� it
can be di�cult or cumbersome to formulate a sensible speci	cation on the bigger
submatrix of H� Returning to our example� let us form a speci	cation on the
response of zc that considers both a unit step at wc �a particular signal� and a
white noise at wd �a stochastic process�� A possible form for such a speci	cation
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might be

Henv cmb
�
� fH j Prob �smin�t� � zc�t� � smax�t� for � � t � ��� � ��
�g �

where zc � Hccwc � Hcdwd� wc is a unit step� and wd is a white noise� Roughly
speaking� the speci	cation Henv cmb requires at least a 
�� probability that the
envelope constraint Henv be satis	ed over the 	rst ten seconds� Henv cmb limits the
e�ect the �stochastic� disturbance can have during a command step input� however�
we do not know whether Henv cmb is convex�



Chapter 9

Differential Sensitivity
Specifications

In this chapter we consider speci�cations that limit the di
erential sensitivity
of the closed�loop transfer matrix with respect to changes in the plant� For
certain important cases	 these speci�cations are closed�loop convex� The most
general speci�cation that limits di
erential sensitivity of the closed�loop system
is	 however	 not closed�loop convex�

In the previous chapter we considered various speci	cations that prescribe how the
closed�loop system should perform� This included such important considerations
as the response of the system to commands and disturbances that may a�ect the
system� In this chapter and the next we focus on another extremely important
consideration� how the system would perform if the plant were to change�

Many control engineers believe that the primary bene	ts of feedback are those
considered in this chapter and the next�robustness or insensitivity of the closed�
loop system to variations or perturbations in the plant� From another point of
view� the performance of a control system is often limited not by its ability to meet
the performance speci	cations of the previous chapter� but rather by its ability to
meet the speci	cations to be studied in this chapter and the next� which limit the
sensitivity or guarantee robustness of the system�

There are several general methods that measure how sensitive the closed�loop
system is to changes in the plant�

� Di�erential sensitivity � the size of the derivative of H with respect to P �

� Worst case perturbation� the largest change in H that can be caused by a
certain speci	c set of plant perturbations�

� Margin� the smallest change in the plant that can cause some speci	cation to
be violated�

195
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In this chapter we consider the 	rst method� the other two are discussed in the next
chapter�

9.1 Bode’s Log Sensitivities

9.1.1 First Order Fractional Sensitivity

H� Bode was the 	rst to systematically study the e�ect of small changes in closed�
loop transfer functions due to small changes in the plant� He considered the I�O
transfer function T of the SASS ��DOF control system �see section �������

T �
P�K

� � P�K
�

He noted that for any frequency s�

�T �s�

�P��s�

�
T �s�

P��s�
�

�

� � P��s�K�s�
� S�s�� �
���

which gave the name and symbol S to the classical sensitivity transfer function�
We thus have a basic rule�of�thumb for the ��DOF control system�

�T �s�

T �s�
� S�s�

�P��s�

P��s�
�
���

�� means equal to 	rst order�� which we interpret as follows� the fractional or
relative change in the I�O transfer function is� to 	rst order� the sensitivity transfer
function times the fractional change in P�� For example� and roughly speaking� at
a frequency � with jS�j��j � ���� a ten percent change in the complex number
P��j�� yields a change in T �j�� of only �and approximately� one percent�

An important consequence of �
��� is that a design speci	cation that limits the
	rst order fractional change in the I�O transfer function with respect to fractional
changes in P� can be expressed as an equivalent closed�loop convex speci	cation that
limits the size of the sensitivity transfer function� For example� the speci	cation

�����T �j��T �j��

���� �� ����

�����P��j��P��j��

���� for � � �bw� �
���

��� means � holds to 	rst order�� which limits the 	rst order fractional change in T
to no more than �� of the fractional change in P� for frequencies less than �bw� is
equivalent to the design speci	cation

jS�j��j � ���� for � � �bw� �
���

which is closed�loop convex�
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The precise meaning of �
��� is���� lim
�P��j�	��

�T �j��

T �j��

�
�P��j��

P��j��

���� � jS�j��j � ���� for � � �bw� �
���

In many cases� the limit in �
��� is rapidly approached� i�e�� the 	rst order approxi�
mation to the fractional change in T accurately predicts the actual fractional change
in T due to a �non�di�erential� change in P�� We will see two examples of this in
sections 
���� and 
�����

9.1.2 Logarithmic Sensitivity

We can express �
��� as

S�s� �
� log T �s�

� logP��s�
� �
���

For this reason S�s� is called the logarithmic sensitivity of T with respect to P��
We must be careful about what �
��� means� By log T �s� we mean

log T �s� � log jT �s�j� j � T �s� �
���

where � T �s� is a phase angle� in radians� of T �s�� Whereas log jT �s�j is unambiguous
and well�de	ned for all s for which T �s� �� �� the phase angle � T �s� is ambiguous�
it is only de	ned to within an integer multiple of ��� On any simply�connected
region in the complex plane on which T �s� �� �� it is possible to make a selection
of particular phase angles in �
��� at each s in such a way that � T �s� is continuous
on the region� and in fact log T �s� is analytic there� When this process of phase
selection is applied along the imaginary axis� it is called phase unwrapping�

In particular� if T �s�� �� �� then in some small disk around T �s�� in the complex
plane� we can de	ne log T �s� �i�e�� choose the phase angles� so that it is analytic
there� Moreover any two such de	nitions of log T �s� will di�er by a constant multiple
of ��j� and therefore yield the same result in the partial derivative in �
���� evaluated
at s�� A similar discussion applies to the expression logP��s�� while it need not
make sense as an unambiguous function of the complex variable s over the whole
complex plane� the result in �
��� will nevertheless be unambiguous�

The real part of �
���� which is the natural log of the magnitude� has an uncom�
mon unit in engineering� called nepers� One neper is the gain that corresponds to a
phase angle of one radian� and is approximately 
��dB� In more familiar units� one
decibel corresponds to about ��� degrees of phase�

�
��� can be expressed more completely as

� log jT �s�j � �S�s�� log jP��s�j � �S�s�� � P��s� �
�
�

� � T �s� � �S�s�� log jP��s�j� �S�s�� � P��s�� �
�
�

These formulas show the 	rst order change in the magnitude and phase of the I�O
transfer function caused by magnitude and phase variations in P��
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9.1.3 Example: Gain Variation

Our 	rst example concerns a change in gain� i�e�

�P��s� � �P��s�� �
����

so that

� logP��j�� � ��

Hence from �
�
�
�
� we have

� log jT �j��j � ��S�j��� �
����

� � T �j�� � ��S�j��� �
����

It follows� for example� that the closed�loop convex speci	cation

�S�j��� � �

guarantees that the magnitude of the I�O transfer function at the frequency �� is
�rst order insensitive to variations in ��

To give a speci	c example that compares the 	rst order deviation in jT �j��j to
the real deviation� we take the standard example plant and controllerK�a	 described
in section ���� and consider the e�ect on jT �j��j of a gain perturbation of � � ����
which is about �dB� Figure 
�� shows�

jT �j��j �

���� P std
� �j��K�a	�j��

� � P std
� �j��K�a	�j��

���� �
which is the nominal magnitude of the I�O transfer function�

jT pert�j��j �

���� ����P std
� �j��K�a	�j��

� � ����P std
� �j��K�a	�j��

���� �

which is the actual magnitude with the ��� gain increase in P std
� � and

jT approx�j��j � jT �j��j exp

�
�����

�
�

� � P std
� �j��K�a	�j��

��
� �
����

which is the magnitude of the perturbed I�O transfer function predicted by the 	rst
order perturbation formula �
����� For this example� the 	rst order prediction gives
a good approximation of the perturbed magnitude of the I�O transfer function�
even for this �dB gain change in P std

� �
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Figure ��� When P std
� is replaced by ����P std

� 	 the I�O transfer function�s
magnitude changes from jT j to jT pertj� jT approxj is a �rst order approxima�
tion of jT pertj computed from ������� In this example the e
ect of a plant
gain change as large as ��
 is well approximated using the di
erential sen�
sitivity�

9.1.4 Example: Phase Variation

In this example we study the e�ects on T of a phase variation in P�� i�e��

P��j�� � �P��j�� � ej���	P��j���

In this case we have� from �
�
�
�
��

� log jT �j��j � �	����S�j��� �
����

� � T �s� � 	����S�j��� �
����

To guarantee that jT �j���j is� for example� 	rst order insensitive to phase variations
in P��j���� we have the speci	cation

�S�j��� � ��

which is closed�loop a�ne�
We now consider a speci	c example that compares the actual e�ect of a phase

variation in P� to the e�ect predicted by the 	rst order perturbational analy�
sis �
����� As above� our plant is the standard example described in section ����
together with the same controller K�a	� The speci	c perturbed P std

� is

P std
� �s� � �P std

� �s� �
�

s�
�� s

� � s
�
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so that the phase perturbation is

	��� � �
�
tan��

�

��
� tan��

�

�

�
�

which is plotted in 	gure 
��� The maximum phase shift of ��
�
� corresponds to
about �dB of gain variation �see the discussion in section 
������
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Figure ��� A speci�c phase shift in P std
� �

Figure 
�� shows the nominal magnitude of T � the actual perturbed magnitude
caused by the phase shift in P std

� � and the perturbed magnitude predicted by the
	rst order analysis�

jT approx�j��j � jT �j��j exp

�
�	����

�

� � P std
� �j��K�a	�j��

�
� �
����

9.1.5 Other Log Sensitivities

We have seen that the logarithmic sensitivity of the I�O transfer function T is given
by another closed�loop transfer function� the sensitivity S� Several other important
closed�loop transfer functions have logarithmic sensitivities that are also closed�loop
transfer functions� Table 
�� lists some of these�

From the top line of this table we see that a speci	cation such as
���� � logS�j��� logP��j��

���� � � for � � �bw� �
����
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Figure ��� When the phase factor ��� � s����� � s� in P std
� is replaced

by ��� s����� s�� the magnitude of the I�O transfer function changes from
jT j to jT pertj� jT approxj is a 	rst order approximation of jT pertj computed
from �
�����

H
� logH

� logP�
�

� � P�K

�P�K

� � P�K

K

� � P�K

�P�K

� � P�K

P�
� � P�K

�

� � P�K

P�K

� � P�K

�

� � P�K

Table ��� The logarithmic sensitivity of some important closed�loop trans�
fer functions are also closed�loop transfer functions� In the general case�
however� the logarithmic sensitivity of a closed�loop transfer function need
not be another closed�loop transfer function�
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is equivalent to the closed�loop convex speci�cation���� �P��j��K�j��

� � P��j��K�j��

���� � � for � � �bw� ����	�

In ����
� we might interpret �S as the command input to tracking error transfer
function� so that the speci�cation ����
�� and hence ����	�� limits the logarithmic
sensitivity of the command input to tracking error transfer function with respect to
changes in P��

9.2 MAMS Log Sensitivity

It is possible to generalize Bode�s results to the MAMS case� We consider the
MAMS ��DOF control system �see section ��
���� with I�O transfer matrix

T � �I � P�K�y���P�Kr�

If the plant is perturbed so that P� becomes P� � �P�� we have

T � �T � �I � �P� � �P��K�y�
��

�P� � �P��Kr

Retaining only �rst order terms in �P� we have

�T � �I � P�K�y����P�Kr � �I � P�K�y����P�K�y�I � P�K�y���P�Kr

� �I � P�K�y����P��I � K�yP��
��Kr

� S�P��I � K�yP��
��Kr� ������

where S � �I � P�K�y��� is the �output�referred� sensitivity matrix of the MAMS
��DOF control system�

Now suppose that we can express the change in P� as

�P� � �P frac
� P��

We can interpret �P frac
� as an output�referred fractional perturbation of P�� as shown

in �gure ���� Then from ������ we have

�T � S�P frac
� P��I � K�yP����Kr � S�P frac

� T�

so that

�T � �T fracT�

where

�T frac � S�P frac
� � ������

This is analogous to ������ it states that the output�referred fractional change in
the I�O transfer matrix T is� to �rst order� the sensitivity matrix S times the
output�referred fractional change in P��
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P�

�P frac
�

u ypr

�

�
q

Figure ��� An output�referred fractional perturbation of the transfer ma�
trix P�� In the SASS case� �P� � � logP��

The design speci�cation�

�max��T frac�j��� �� ���� for � � �bw� �max��P frac
� �j��� � ����� ������

which limits the �rst order fractional change in T to �� over the bandwidth �bw�
despite variations in P� of ���� is therefore equivalent to the closed�loop convex
speci�cation

�max�S�j��� � ���� for � � �bw� ������

We remind the reader that the inequality in ������ holds only to �rst order in
�P frac

� � its precise meaning is

lim
�P���

�max��T frac�j���

�max��P frac
� �j���

�
����

����
for � � �bw�

9.2.1 Cruz and Perkins’ Comparison Sensitivity

Cruz and Perkins gave another generalization of Bode�s log sensitivity to the MAMS
��DOF control system using the concept of comparison sensitivity� in which the
perturbed closed�loop system is compared to an equivalent open�loop system�

The open�loop equivalent system consists of P���P� driven by the unperturbed
actuator signal� as shown at the top of �gure ���� For �P� � �� the open�loop
equivalent system is identical to the closed�loop system shown at the bottom of
�gure ���� For �P� nonzero� however� the two systems di�er� By comparing the �rst
order changes in these two systems� we can directly see the e�ect of the feedback
on the perturbation �P��

The transfer matrix of the open�loop equivalent system is

T ole � �P� � �P���I � K�yP��
��Kr�

so that

�T ole � �P��I � K�yP��
��Kr�
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P�

P� � �P�

P� � �P�
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T pert
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u yp
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�
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q

q

�
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Figure ��� In the open�loop equivalent system� shown at top� the actuator
signal u drives P���P�� so there is no feedback around the perturbation �P��
The bene	t of feedback can be seen by comparing the 	rst order changes in
the transfer matrices from r to yolep and ypertp � respectively �see �
�
����

Comparing this to the �rst order change in the I�O transfer matrix� given in �������
we have

�T � S�T ole� ����
�

This simple equation shows that the �rst order variation in the I�O transfer
matrix is equal to the sensitivity transfer matrix times the �rst order variation in
the open�loop equivalent system� It follows that the speci�cation ������ can be
interpreted as limiting the sensitivity of the I�O transfer matrix to be no more than
�� of the sensitivity of I�O transfer matrix of the open�loop equivalent system�

9.3 General Differential Sensitivity

The general expression for the �rst order change in the closed�loop transfer matrix
H due to a change in the plant transfer matrix is

�H � �Pzw � �PzuK�I � PyuK���Pyw � PzuK�I � PyuK����Pyw
� PzuK�I � PyuK����PyuK�I � PyuK���Pyw�

������
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The last term shows that �H��Pyu �which is a complicated object with four indices�
has components that are given by the product of two closed�loop transfer functions�
It is usually the case that design speci�cations that limit the size of �H��Pyu are
not closed�loop convex� since� roughly speaking� a product can be made small by
making either of its terms small�

9.3.1 An Example

Using the standard example plant and controller K�a�� described in section ���� we
consider the sensitivity of the I�O step response with respect to gain variations in
P std
� � Since �P std

� � �P std
� � the sensitivity

s��t�
�
�

�s�t�

��

����
���

is simply the unit step response of the transfer function

P std
� K�a�

�� � P std
� K�a���

� ST� ������

This transfer function is the product of two closed�loop transfer functions� which is
consistent with our general comments above�

In �gure ��� the actual e�ect of a ��� gain reduction in P std
� on the step response

is compared to the step response predicted by the �rst order perturbational analysis�

sapprox�t� � s�t�� ���s��t��

with the controller K�a�� The step response sensitivity with this controller is shown
in �gure ��
� For plant gain changes between ����� the �rst order approximation
to the step response falls in the shaded envelope s�t�� ���s��t��

We now consider the speci�cation

js����j � ��
�� ������

which limits the sensitivity of the step response at time t � � to gain variations in
P std
� � We will show that this speci�cation is not convex�

The controller K�a� yields a closed�loop transfer matrix H�a� with s
�a�
� ��� �

����
� so H�a� satis�es the speci�cation ������� The controller K�b� yields a closed�

loop transfer matrix H�b� with s
�b�
� ��� � ��
��� so H�b� also satis�es the speci�ca�

tion ������� However� the average of these two transfer matrices� �H�a� � H�b�����
has a step response sensitivity at t � � of ��
	�� so �H�a� �H�b���� does not satisfy
the speci�cation ������� Therefore the speci�cation ������ is not convex�
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Figure ��� When P std
� is replaced by ���P std

� � the step response changes
from s to spert� The 	rst order approximation of spert is given by sapprox�t� �
s�t�� ��
s��t��
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Figure ��� The sensitivity of the step response to plant gain changes is
shown for the controller K�a�� The 	rst order approximation of the step
response falls in the shaded envelope when P std

� is replaced by �P std
� � for

��� � � � ��
�
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9.3.2 Some Convex Approximations

In many cases there are useful convex approximations to speci�cations that limit
general di�erential sensitivities of the closed�loop system�

Consider the speci�cation

js��t�j � ��
� for t � �� ����
�

which limits the sensitivity of the step response to gain variations in P�� This
speci�cation is equivalent to

kSTkpk step � ��
��

which is not closed�loop convex� We will describe two convex approximations for
the nonconvex speci�cation ����
��

Suppose

smin�t� � s�t� � smax�t� for t � � ����	�

is a design speci�cation �see �gure 	���� A weak approximation of the sensitivity
speci�cation ������ �along with the step response speci�cation ����	�� is that a
typical �and therefore �xed� step response satis�es the speci�cation�

kSTtypkpk step � ��
��

where Ttyp is the transfer function that has unit step response

styp�t� �
smin�t� � smax�t�

�
�

A stronger approximation of ����
� �along with the step response speci�ca�
tion ����	�� requires that the sensitivity speci�cation be met for every step response
that satis�es ����	��

max fkSvk� j smin�t� � v�t� � smax�t� for t � �g � ��
��

This is an inner approximation of ����
�� meaning that it is tighter than ����
��
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Notes and References

Feedback and Sensitivity
The ability of feedback to make a system less sensitive to changes in the plant is discussed
in essentially every book on feedback and control� see Mayr �May��� for a history of
this idea� An early discussion �in the context of feedback ampli	ers� can be found in
Black �Bla���� in which we 	nd�

� � � by building an ampli	er whose gain is deliberately made� say ��dB higher
than necessary� and then feeding the output back on the input in such a
way as to throw away the excess gain� it has been found possible to e�ect
extraordinary improvement in constancy of ampli	cation � � � By employing
this feedback principle� ampli	ers have been built and used whose gain varied
less than ����dB with a change in plate voltage from 
��V to 
��V �whereas�
for an ampli	er of conventional design and comparable size this change would
have been ���dB�

For a later discussion see Horowitz �Hor��� ch��� A concise discussion appears in chapter
�� On the Advantages of Feedback� of Callier and Desoer �CD��a��

Differential Sensitivity
Bode �Bod��� was the 	rst to systematically study the e�ect of small �di�erential� changes
in closed�loop transfer functions due to small �di�erential� changes in the plant� On page
�� of �Bod��� we 	nd �with our corresponding notation substituted��

The variation in the 	nal gain characteristic �T � in dB� per dB change in the
gain of �P��� is reduced in the ratio �S��

A recent exposition of di�erential sensitivity can be found in chapter � of Lunze �Lun�	��

Comparison Sensitivity
The notion of comparison sensitivity was introduced by Cruz and Perkins in �CP����
see also the book edited by Cruz �Cru���� The idea of an open�loop equivalent system�
however� is older� In �NGK��� x
���� it is called the equivalent cascade con�guration of
the control system� Recent discussions of comparison sensitivity can be found in Callier
and Desoer �CD��a� ch
� and Anderson and Moore �AM	�� x�����

Sensitivity Specifications that Limit Control System Performance
The idea that sensitivity or robustness speci	cations can limit the achievable control system
performance is explicitly expressed in� e�g�� Newton� Gould� and Kaiser �NGK��� p����

Control systems often employ mechanical� hydraulic� or pneumatic elements
which have less reproducible behavior than high quality electric circuit ele�
ments� This practical problem often causes the control designer to stop short
of an optimum design because he knows full well that the parameters of the
physical system may deviate considerably from the data on which he bases
his design�

A more recent paper that raised this issue� in the context of regulators designed by state�
space methods� is Doyle and Stein �DS�
��



Chapter 10

Robustness Specifications via
Gain Bounds

In this chapter we consider robustness speci	cations� which limit the worst case
variation in the closed�loop system that can be caused by a speci	c set of plant
variations� We describe a powerful method for formulating inner approximations
of robustness speci	cations as norm�bounds on the nominal closed�loop transfer
matrix� These speci	cations are closed�loop convex�

In the previous chapter we studied the di�erential sensitivity of the closed�loop
system to variations in the plant� Di�erential sensitivity analysis often gives a
good prediction of the changes that occur in the closed�loop system when the plant
changes by a moderate �non�vanishing� amount� and hence� designs that satisfy
di�erential sensitivity speci�cations are often robust to moderate changes in the
plant� But di�erential sensitivity speci�cations cannot guarantee that the closed�
loop system does not change dramatically �e�g�� become unstable� when the plant
changes by a non�vanishing amount�

In this chapter we describe robustness speci�cations� which� like di�erential sen�
sitivity speci�cations� limit the variation in the closed�loop system that can be
caused by a change or perturbation in the plant� In this approach� however�

� the sizes of plant variations are explicitly described� e�g�� a particular gain
varies ��dB�

� robustness speci�cations limit the worst case change in the closed�loop system
that can be caused by one of the possible plant perturbations�

By contrast� in the di�erential sensitivity approach�

� the sizes of plant variations are not explicitly described� they are vaguely
described as �small��

209
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� di�erential sensitivity speci�cations limit the �rst order changes in the closed�
loop system that can be caused by the plant perturbations�

Robustness speci�cations give guaranteed bounds on the performance deterio�
ration� even for �large� plant variations� for which extrapolations from di�erential
sensitivity speci�cations are dubious� O�setting this advantage are some possible
disadvantages of robustness speci�cations over di�erential sensitivity speci�cations�

� It may not be possible to model the actual variations in the plant in the
precise way required by robustness speci�cations� For example� we may not
know whether to expect a ��dB or a ����dB variation in a particular gain�

� It may not be desirable to limit the worst case variation in the closed�loop
system� which results in a conservative design� A speci�cation that limits the
typical variations in the closed�loop system �however we may de�ne typical�
may better capture the designer�s intention�

Robustness speci�cations are often not closed�loop convex� just as the most gen�
eral speci�cations that limit di�erential sensitivity are not closed�loop convex� We
will describe a general small gain method for formulating convex inner approxima�
tions of robustness speci�cations� the Notes and References for this chapter describe
some of the attempts that have been made to make approximations of robustness
speci�cations that are less conservative� but not convex� Since we will be describ�
ing convex approximations of robustness speci�cations� we should add the following
item to the list of possible disadvantages�

� The small gain based convex inner approximations of robustness speci�cations
can be poor approximations� Thus� designs based on these approximations
can be conservative�

This topic is addressed in some of the references at the end of this chapter�
In the next section we give a precise and general de�nition of a robustness

speci�cation� which may appear abstract on �rst reading� In the remainder of this
chapter we describe the framework for small gain methods� and then the small
gain methods themselves� The framework and methods are demonstrated on some
simple� speci�c examples that are based on our standard example SASS ��DOF
control system described in section ���� These examples continue throughout the
chapter�

10.1 Robustness Specifications

10.1.1 Some Definitions

In this section we give a careful de�nition of a robustness speci�cation� we defer until
the next section examples of common robustness speci�cations� Roughly speaking�
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a robustness speci�cation requires that some design speci�cation D must hold� even
if the plant P is replaced by any P pert from a speci�ed set P of possible perturbed
plants�

Let us be more precise� Suppose that P is any set of �nw � nu� � �nz � ny�
transfer matrices� We will refer to P as the perturbed plant set� and its elements as
perturbed plants� Let D denote some design speci�cation� i�e�� a boolean function
on nz � nw transfer matrices� and let K denote any nu � ny transfer matrix�

De�nition ����� We say D holds robustly for K and P if for each P pert � P� D
holds for the transfer matrix P pert

zw � P pert
zu K�I � P pert

yu K���P pert
yw �

In words� the design speci�cation D holds robustly for K and P if the controller
K connected to any of the perturbed plants P pert � P yields a closed�loop system
that satis�es D� De�nition ���� is not� by itself� a design speci�cation� it is a
property of a controller and a set of transfer matrices� Note also that de�nition ����
makes no mention of the plant P �

Once we have the concept of a design speci�cation holding robustly for a given
controller and perturbed plant set� we can de�ne the notion of a robustness speci�
�cation� which will involve the plant P �

De�nition ����� The robustness speci�cation Drob formed from D� P� and P is

given by�

Drob � D holds robustly for K and P�

for every K that satis�es

H � Pzw � PzuK�I � PyuK���Pyw� ������

Thus a robustness speci�cation is formed from a design speci�cation D� a per�
turbation plant set P� and the plant P � The reader should note that Drob is indeed
a design speci�cation� it is a boolean function of H� We can interpret Drob as fol�
lows� if H satis�es Drob and K is any controller that yields the closed�loop transfer
matrix H �when connected to P �� the closed�loop transfer matrix that results from
connecting K to any P pert � P will all satisfy D�

A sensible formulation of the plant will including signals such as sensor and
actuator noises and the sensor and actuator signals �recall chapter 
�� In this case
the controller K is uniquely determined by a closed�loop transfer matrix H that
is realizable� since �I � PyuK��� will appear as a submatrix of H� and we can
determine K from this transfer matrix� In these cases we may substitute �the K�
for �every K� in the de�nition �����

In many cases� P � P� and P consists of transfer matrices that are �close� to P �
In this context P is sometimes called the nominal plant� In this case the robustness
speci�cation Drob requires that even with the worst perturbed plant substituted for
the nominal plant� the design speci�cation D will continue to hold�
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If the design speci�cation D is Dstable� i�e�� closed�loop stability �see chapter 
��
we call Drob the robust stability design speci�cation associated with P and P �

Throughout this chapter� P is understood� so the robustness speci�cation will
be written

Drob�P�D��

The robust stability speci�cation associated with the perturbed plant set P will be
denoted

Drob stab�P�
�
� Drob�P�Dstable��

10.1.2 Time-Varying and Nonlinear Perturbations

It is possible to extend the perturbed plant set to include time�varying or nonlinear
systems� although this requires some care since many of our basic concepts and
notation depend on our assumption ��� that the plant is LTI� Such an extension
is useful for designing a controller K for a nonlinear or time�varying plant P nonlin�
The controller K is often designed for a �nominal� LTI plant P that is in some
sense �close� to P nonlin� P nonlin is then considered to be a perturbation of P �

In this section we brie�y and informally describe how we may modify our frame�
work to include such nonlinear or time�varying perturbations� In this case the per�
turbed plant is a nonlinear or time�varying system with nw �nu inputs and nz �ny
outputs� The perturbed closed�loop system� obtained by connecting the controller
between the signals y and u of the perturbed plant� is now also nonlinear or time�
varying� so the perturbed closed�loop system cannot be described by an nz � nw
transfer matrix� as in ������� Instead� the closed�loop system is described by the
nonlinear or time�varying closed�loop operator that maps w into the resulting z�

A design speci�cation will simply be a predicate of the closed�loop system� The
only predicate that we will consider is closed�loop stability� which� roughly speaking�
means that z is bounded whenever w is bounded �the de�nition of closed�loop
stability given in chapter 
 does not apply here� since it refers to the transfer matrix
H�� The reader can consult the references given at the end of this chapter for precise
and detailed de�nitions of closed�loop stability of nonlinear or time�varying systems�

The robust stability speci�cation Drob stab will mean that when the �LTI� con�
troller K� which is designed on the basis of the �LTI� plant P � is connected to any
of the nonlinear or time�varying perturbed plants in P� the resulting �nonlinear or
time�varying� closed�loop system is stable�

10.2 Examples of Robustness Specifications

In this section we consider some examples of robustness speci�cations� organized
by their associated plant perturbation sets� Most of these robustness speci�cations
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are not convex� but later in this chapter we describe a general method of forming
convex inner approximations of these speci�cations�

10.2.1 Finite Plant Perturbation Sets

A simple but important case occurs when P is a �nite set�

P � fP�� � � � � PNg � ������

Neglected Dynamics

Recall from chapter � that P may be a simple �but not very accurate� model of
the system to be controlled� Our perturbed plant set might then be P � fP cmplxg�
where P cmplx is a complex� detailed� and accurate model of the system to be con�
trolled� In this case� the robustness speci�cation Drob guarantees that the controller
we design using the simple model P � will� when connected to P cmplx� satisfy the
design speci�cation D�

As a speci�c example� suppose that our plant is our standard numerical example�
the ��DOF controller described in section ���� with plant

P �

�
Pzw Pzu
Pyw Pyu

�
�

�
� P std

� � � P std
�

� � � �
�P std

� �� � �P std
�

�
� �

The more detailed model of the system to be controlled might take into account a
high frequency resonance and roll�o� in the system dynamics and some fast sensor
dynamics� neither of which is included in the plant model P �

P cmplx �

�
� P cmplx

� � � P cmplx
�

� � � �

�P cmplx
� Hsens �Hsens � �P cmplx

� Hsens

�
�

where

P cmplx
� �s� �

P std
� �s�

� � �����s����� � �s������
� Hsens�s� �

�

� � s�	�
�

This is shown in �gure ���� below �c�f� �gure ������
For this example� the perturbed plant set is

P � fP cmplxg� ����
�

The robust stability speci�cation Drob stab that corresponds to ����
� requires
that the controller designed on the basis of the nominal plant P will also stabilize the
complex model P cmplx of the system to be controlled� Roughly speaking� Drob stab

requires that the system cannot be made unstable by the high frequency resonance
and roll�o� in the system dynamics and the dynamics of the sensor� which are
ignored in the model P �
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P cmplx
�K

u nproc yp nsensor
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r qq Hsens

Figure ���� The controller K� which is designed on the basis of the model
P std
� � is connected to a more detailed model of the system to be controlled�

P cmplx� The model P cmplx includes a high frequency resonance and roll�o�
in P cmplx

� � and the sensor dynamics �� � s�������

Failure Modes

The perturbed plants in ������ may represent di�erent failure modes of the system to
be controlled� For example� P� might be a model of the system to be controlled after
an actuator has failed �i�e�� P� is P � but with the column associated with the failed
actuator set to zero�� In this case the speci�cation of robust stability guarantees
that the closed�loop system will remain stable� despite the failures modeled by
P�� � � � � PN �

10.2.2 Parametrized Plant Perturbations

In some cases the perturbed plant set P can be described by some parameters that
vary over ranges�

P �
�
P pert���

�� L� � �� � U�� � � � � Lk � �k � Uk

�
�

In this case we often have P � P� the corresponding parameter is called the nominal

parameter �

P � P pert��nom��

Parametrized plant perturbation sets can be used to model several di�erent
types of plant variation�

� Component tolerances� A single controller K is to be designed for many
plants� for example� a manufacturing run of the system to be controlled� The
controller is designed on the basis of a nominal plant� the parameter variations
represent the �slight� one hopes� di�erences in the individual manufactured
systems� Designing a controller that robustly achieves the design speci�cations
avoids the need and cost of tuning each manufactured control system �see
section �������
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� Component drift or aging� A controller is designed for a system that is well
modeled by P � but it is desired that the system should continue to work if or
when the system to be controlled changes� due to aging or drift in its compo�
nents� Designing a controller that robustly achieves the design speci�cations
avoids the need and cost of periodically re�tuning the control system�

� Externally induced changes� The system to be controlled may be well mod�
eled as an LTI system that depends on an external operating condition� which
changes slowly compared to the system dynamics� Examples include temper�
ature induced variations in a system� and the e�ects of varying aerodynamic
pressure on aircraft dynamics� Designing a controller that robustly achieves
the design speci�cations can avoid the need for a gain�scheduled or adaptive
controller� �See the Notes and References in chapter ���

� Model parameter uncertainty� A parametrized perturbed plant set can model
uncertainty in modeling the system to be controlled �see section ������� In
a model developed from physical principles� the �i may represent physical
parameters such as lengths� masses� and heat conduction coe�cients� and
the bounds Li and Ui are then minimum and maximum values that could
be expected to occur� In a black box model derived from an identi�cation
procedure� the �i could represent transfer function coe�cients� and the Li

and Ui might represent the ��� con�dence bands for the identi�ed model�

Example: Gain Margins

Gain margin speci�cations are examples of classical robustness speci�cations that
are associated with a parametrized plant perturbation set� We consider the classical
��DOF controller� with perturbed plant set described informally by

P pert
� �s� � �P��s�� L � � � U�

More precisely� we have the perturbed plant set

P �

	

�
�
� �P� � � �P�

� � � �
��P� �� � ��P�

�
�
������ L � � � U

�

� � �nom � �� ������

where � � L � � � U �
The speci�cation of robust stability with the perturbed plant set ������ is de�

scribed in classical terms as a positive gain margin of �� log�� UdB and a negative
gain margin of �� log�� LdB�

As an example we will use later� the robustness speci�cation that requires gain
margins of ��dB and �
��dB is given by

D�	��
��db gm � Drob stab�P� with L � ����	� U � ���	�� ������

with the plant perturbation set �������
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Example: Pole Variation

The parameter vector � may determine pole or zero locations in the plant� As a
speci�c example� consider the perturbed plant set for the standard ��DOF example
of section ���� described informally by

P pert
� �s� �

�

s�
�� s

� � s
� � � � � ��� �nom � ��� ������

Some of these phase variations in P std
� are shown in �gure �����
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Figure ���	 The perturbed plants described by ������ consist of a phase
shift in P std

� � shown here are the phase shifts for � � �nom � ��� ��� ���
�c�f� 	gure 
�
� which shows a particular phase shift��

The robust stability speci�cation Drob stab is a strengthening of the stability
speci�cation Dstable� Drob stab requires that the controller stabilize not only the
plant P � but also the perturbed plants ������� Drob stab can be thought of as a type
of phase margin speci�cation�

10.2.3 Unknown-but-Bounded Transfer Function Perturbations

It is often useful to model the uncertainty in the plant �as a model of the system
to be controlled� as frequency�dependent errors in the frequency responses of its
entries� Such plant perturbation sets can be used to account for�

� Model uncertainty� The plant transfer functions may inaccurately model the
system to be controlled because of measurement or identi�cation errors� For
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example� the transfer functions of the system to be controlled may have been
measured at each frequency to an accuracy of ��� or these measurements
might be repeatable only to ���

� High frequency parasitic dynamics� A model of the system to be controlled
may become less accurate at high frequencies because of unknown or unmod�
eled parasitic dynamics� Moreover these parasitic dynamics may change with
time or other physical parameters� and so cannot be con�dently modeled� In
electrical systems� for example� we may have small stray capacitances and
�self and mutual� inductances between conductors� these parasitic dynamics
can change signi�cantly when the electrical or magnetic environment of the
system is changed�

In state�space plant descriptions� the addition of high frequency parasitic dy�
namics is called a singular perturbation� because the perturbed plant has more
states than the plant�

Since these plant perturbation sets cannot be described by the variation of a
small number of real parameters� they are sometimes called nonparametric plant

perturbations�

There are some subtle distinctions between intentionally neglected system dy�
namics that could in principle be modeled� and parasitic dynamics that cannot be
con�dently modeled� For example� a model of a mechanical system may be devel�
oped on the assumption that a drive train is rigid� an assumption that is good at
low frequencies� but poor at high frequencies� If the high frequency dynamics of this
drive train could be accurately modeled or consistently measured� then we could
develop a more accurate �and more complex� model of the system to be controlled�
as in section ������� However� it may be the case that these high frequency dynam�
ics are very sensitive to minor physical variations in the system� such as might be
induced by temperature changes� bearing wear� and so on� In this case the drive
train dynamics could reasonably be modeled as an unknown transfer function that
is close to one at low frequencies� and less close at high frequencies�

Example: Relative Uncertainty in P�

We consider again our standard SASS ��DOF control system example� Suppose we
believe that the relative or fractional error in the transfer function P� �as a model of
the system to be controlled� is about ��� at low frequencies �say� � � ��� and much
larger at high frequencies �say� up to ���� for � � ����� We de�ne the relative
error as

P rel err
�

�
�

P pert
� � P�
P�

�

so that

P pert
� � �� � P rel err

� �P�� ����
�
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Our plant model uncertainty can be described by a frequency�dependent limit on
the magnitude of P rel err

� � e�g��

kP rel err
� �Wrel errk� � �� ����	�

where

Wrel err�s� � ���
� � s���

� � s����
� ������

We interpret jWrel err�j��j� which is plotted in �gure ���
� as the maximum relative
error in P��j��� We say that P rel err

� is an unknown�but�bounded transfer function�
One interpretation is shown in �gure �����
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Figure ���� From ������� jWrel err�j��j is the maximum relative error in
P��j��� This represents a relative error of 
�� at low frequencies and up
to ���� at high frequencies�

The perturbed plant set for this example is thus

P �

	

�
�
� P pert

� � � P pert
�

� � � �

�P pert
� �� � �P pert

�

�
�
������
��P rel err

� �Wrel err

��
�
� �

�

� � �������

where P pert
� is given by ����
��

We note for future reference two robustness speci�cations using the perturbed
plant set �������� The �rst is robust stability� Drob stab� and the second is the
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��P pert
� �j���

��P pert
� �j���

Figure ���� The complex transfer function P pert
� �j�� is shown versus fre�

quency �� Circles that are centered at the nominal plant transfer function�
P��j��� with radius jWrel err�j��P��j��j are also shown� ������ and ������
require that the perturbed plant transfer function� P pert

� � must lie within
the region enclosed by these circles�

stronger speci�cation that these plant perturbations never cause the RMS gain
from the reference input to the actuator signal to exceed 
��

Drob �P� kT�P�k� � 
�� �������

�T�P� is the transfer function from the reference input to the actuator signal��

10.2.4 Neglected Nonlinearities

Example: Actuator Saturation

A common nonlinearity encountered in systems to be controlled is saturation of the
actuator signals� shown in �gure ����� This system is described by

�
z
y

�
� P lin

�
w
usat

�
� �������

usati �t� � Si Sat�ui�t��Si�� i � �� � � � � nu� �����
�
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where P lin is an LTI system and the unit saturation function Sat � R � R is
de�ned by

Sat�a�
�
�

	

�

a jaj � �
� a 	 �

�� a � ���
�������

Si is called the saturation threshold of the ith actuator� if the magnitude of each
actuator signal is always below its saturation threshold� then the system is LTI�
with transfer matrix P lin�

P lin

w

u

	�

��

z

y

��

��usat

�
�
�

�
�
�

���

Figure ���� A system to be controlled consists of the LTI system P lin�
driven by a saturated actuator signal� usat� The block diagram for the
saturation nonlinearity shows its graph�

One approach to designing a controller for this nonlinear system is to de�ne the
LTI plant P � P lin� and consider the saturation as a nonlinear perturbation of P �
Thus we consider the perturbed plant set consisting of the single nonlinear system
given by �����������
��

P � fP nonling� �������

By designing an LTI controller for P that yields robust stability for �������� we
are guaranteed that when the controller is connected to the nonlinear system to
be controlled� the resulting nonlinear closed�loop system will at least be stable� If
the actuator signals only occasionally exceed their thresholds� then the closed�loop
transfer matrix H can give a good approximation of the behavior of the nonlinear
closed�loop system� �Another useful approach� also based on the idea of considering
the saturators as a perturbation of an LTI plant� is described in the Notes and
References��

We should also mention the describing function method� a heuristic approach
that is often successful in practice� Roughly speaking� the describing function
method approximates the e�ect of the saturators as a gain reduction in the ac�
tuator channels� such perturbations are handled via gain margin speci�cations� Of
course� gain margin speci�cations do not guarantee that the nonlinear closed�loop
system is stable�
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10.3 Perturbation Feedback Form

In many cases the perturbed plant set P can be represented as the nominal plant
with an internal feedback� as shown in �gure ����� When the internal feedback � is
zero� we recover the nominal plant P � each perturbed plant in P corresponds to a
particular feedback � ��� where � is a set of transfer matrices of the appropriate
size�

P

P pert���

�
yu

w z

q p

Figure ���� Each perturbed plant is equivalent to the nominal plant mod�
i	ed by the internal feedback ��

We will call � the feedback perturbation� The perturbed plant that results from
the feedback perturbation � will be denoted P pert���� and � will be called the
feedback perturbation set that corresponds to P�

P �
�
P pert���

�� � ��
�
� �������

The symbol � emphasizes its role in �changing� the plant P into the perturbed
plant P pert�

The input signal to the perturbation feedback� denoted q� can be considered an
output signal of the plant P � Similarly� the output signal from the perturbation
feedback� denoted p� can be considered an input signal to the plant P � Throughout
this chapter we will assume that the exogenous input signal w and the regulated
output signal z are augmented to contain p and q� respectively�

w �

�
�w
p

�
� z �

�
�z
q

�
�

where �w and �z denote the original signals from �gure ����� This is shown in �g�
ure ���
�

To call p an exogenous input signal can be misleading� since this signal does
not originate �outside� the plant� like command inputs or disturbance signals� as
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P

yu

�w �z

qp
w

� �
z

Figure ���� The plant P showing p as part of the exogenous input signal
w and q as part of the regulated output signal z� By connecting the feedback
perturbation � between q and p� we recover the perturbed plant P pert����

the term exogenous implies� We can think of the signal p as originating outside the
nominal plant� as in �gure �����

To describe a perturbation feedback form of a perturbed plant set P� we give
the �augmented� plant transfer matrix

P �

�
� P�z �w P�zp P�zu

Pq �w Pqp Pqu
Py �w Pyp Pyu

�
� �

along with the set � of perturbation feedbacks� Our original perturbed plant can
be expressed as

P pert��� �

�
P�z �w P�zu

Py �w Pyu

�
�

�
P�zp

Pyp

�
��I � Pqp����

�
Pq �w Pqu

�
������
�

The perturbation feedback form� i�e�� the transfer matrix P in �����
� and the
set �� is not uniquely determined by the perturbed plant set P� This fact will be
important later�

When P contains nonlinear or time�varying systems� the perturbation feedback
form consists of an LTI P and a set � of nonlinear or time�varying systems� Roughly
speaking� the feedback perturbation � represents the extracted nonlinear or time�
varying part of the system� We will see an example of this later�

10.3.1 Perturbation Feedback Form: Closed-Loop

Suppose now that the controller K is connected to the perturbed plant P pert����
as shown in �gures ���	 and �����
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P
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yu

�w �z
qp

K

Figure ���
 When the perturbed plant set is expressed in the perturbation
feedback form shown in 	gure ����� the perturbed closed�loop system can be
represented as the nominal plant P � with the controllerK connected between
y and u as usual� and the perturbation feedback � connected between q and
p�

H

�

�w �z

qp

w

	�

��

��

�� z

Figure ���� The perturbed closed�loop system can be represented as the
nominal closed�loop system with feedback � connected from q �a part of z�
to p �a part of w�� Note the similarity to 	gure 
�
�
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By substituting �����
� into ���
� we �nd that the transfer matrix of the per�
turbed closed�loop system is

Hpert��� � H�z �w � H�zp��I �Hqp����Hq �w� �����	�

where

H�z �w � P�z �w � P�zuK�I � PyuK���Py �w �������

H�zp � P�zp � P�zuK�I � PyuK���Pyp �������

Hq �w � Pq �w � PquK�I � PyuK���Py �w �������

Hqp � Pqp � PquK�I � PyuK���Pyp� �������

Note the similarities between �gures ���� and ���� and the corresponding equa�
tions �����	� and ���
�� Figure ��� and equation ���
� show the e�ect of connect�
ing the controller to the nominal plant to form the nominal closed�loop system�
�gure ���� and equation �����	� show the e�ect of connecting the feedback per�
turbation � to the nominal closed�loop system to form the perturbed closed�loop
system�

We may interpret

Hpert����H�z �w � H�zp��I �Hqp����Hq �w �����
�

as the change in the closed�loop transfer matrix that is caused by the feedback
perturbation �� We have the following interpretations�

� H�z �w is the closed�loop transfer matrix of the nominal system� before its ex�
ogenous input and regulated output were augmented with the signals p and
q�

� Hq �w is the closed�loop transfer matrix from the original exogenous input signal
�w to q� If Hq �w is �large�� then so will be the signal q that drives or excites
the feedback perturbation ��

� H�zp is the closed�loop transfer matrix from p to the original regulated output
signal �z� If H�zp is �large�� then so will be the e�ect on �z of the signal p� which
is generated by the feedback perturbation ��

� Hqp is the closed�loop transfer matrix from p to q� We can interpret Hqp as
the feedback seen by �� looking into the nominal closed�loop system�

Thus� if the three closed�loop transfer matrices H�zp� Hq �w� and Hqp are all �small��
then our design will be �robust� to the perturbations� i�e�� the change in the closed�
loop transfer matrix� which is given in �����
�� will also be �small�� This vague idea
will be made more precise later in this chapter�
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10.3.2 Examples of Perturbation Feedback Form

In this section 
 will denote a transfer function that we have already given elsewhere�
In this way we emphasize the transfer functions that are directly relevant to the
perturbation feedback form�

Neglected Dynamics

Figure ����� shows one way to represent the perturbed plant set P � fP cmplxg
described in section ������ in perturbation feedback form� In this block diagram�
the perturbation feedback � acts as a switch� � � � yields the nominal plant�
� � I turns on the perturbation� to yield the perturbed plant P cmplx�

This perturbation feedback form is described by the augmented plant

�
� P�z �w P�zp P�zu

Pq �w Pqp Pqu
Py �w Pyp Pyu

�
� �

�
������


 
 
 P
���
err � 



 
 
 � � 

P std
� � � � � P std

�

P std
� � � P

���
err � P std

�


 
 
 �P
���
err �P

���
err 


�
������ � �������

where

P ���
err �s� �

������s������ �s������

� � �����s����� � �s������
� P ���

err �s� �
�s�	�

� � s�	�
�

and the feedback perturbation set

� � fIg� �������

When the controller is connected� we have

Hq �w �

�
P std
� S �T T

P std
� S S T

�
� �������

H�zp �

�
P
���
err S �P

���
err T

�P
���
err T�P std

� �P
���
err T�P std

�

�
� �����
�

Hqp �

�
�P

���
err T �TP

���
err

P
���
err S �TP

���
err

�
� �����	�

Gain Margin: Perturbation Feedback Form 1

The perturbed plant set for the classical gain margin speci�cation� given by P
in ������� can be expressed in the perturbation feedback form shown in �gure ������
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P�u

nproc yp nsensor r

yr

�

�
r

�

�
r

�

�
r

�

�
r

�

�
qq q

�

�

� q p

	

�

�����
s������ 
s������

� � ����
s����� � 
s������

�s���

� � s���

Figure ����� Perturbation feedback form for the perturbed plant set that
consists of the single transfer matrix P cmplx� The feedback perturbation �
acts as a switch� � � � yields the nominal plant� � � I yields the perturbed
plant P cmplx�

This perturbation feedback form is described by the augmented plant

�
� P�z �w P�zp P�zu

Pq �w Pqp Pqu
Py �w Pyp Pyu

�
� �

�
���


 
 
 P� 


 
 
 � 

� � � � �

 
 
 �P� 


�
��� � �������

and the perturbation feedback set

� � �L� �� U � � � ����
��

which is an interval� Thus� the feedback perturbations are real constants� or gains�
Informally� the perturbation � causes P� to become �� � ��P��

For this perturbation feedback form� the transfer matrices Hq �w� H�zp� and Hqp

are given by

Hq �w �
�
�T �T�P� T�P�

�
� ����
��

H�zp �

�
P�S
�T

�
� ����
��

Hqp � �T� ����

�



10.3 PERTURBATION FEEDBACK FORM 227

P�u

nproc yp nsensor r

yr

�

�
r

�

�
r

�

�
r

�

�
q q

�q p

Figure ����� One possible perturbation feedback form for the classical
gain margin speci	cation�

Gain Margin: Perturbation Feedback Form 2

The same perturbed plant set� ������� can be described in the di�erent perturbation
feedback form shown in �gure ������ for which�

� P�z �w P�zp P�zu

Pq �w Pqp Pqu
Py �w Pyp Pyu

�
� �

�
���


 
 
 P� 


 
 
 � 

� � � � �

 
 
 �P� 


�
��� ����
��

�only one entry di�ers from ��������� and

� � ��� ��L� �� ��U  � ����
��

which is a di�erent interval than ����
��� For this perturbation feedback form� �
represents a constant that causes P� to become P��������

P�u

nproc yp nsensor r

yr

�

�
r

�

�
r

�

�
r

�

�
q q

� qp

Figure ����	 Another perturbation feedback form for the classical gain
margin speci	cation�

For this second perturbation feedback form� the transfer matrices Hq �w� H�zp� and
Hqp are given by

Hq �w �
�
�T �T�P� T�P�

�
� ����
��
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H�zp �

�
P�S
�T

�
� ����

�

Hqp � S� ����
	�

Only Hqp di�ers from its corresponding expression for the previous perturbation
feedback form�

Pole Variation

In some cases� a plant pole or zero that depends on a parameter can be expressed
in perturbation feedback form� As a speci�c example� �gure ����
 shows one way
to express the speci�c example described in section ������ in perturbation feedback
form�

�

s�
�

s
� ��

�q p

r

�

�
r

�

�
r

�

�
q qq

P pert
� ���

Figure ����� The variation in the phase shift of P�� described by �������
can be represented as the e�ect of a varying feedback gain � inside the
plant�

Here we have

�
� P�z �w P�zp P�zu

Pq �w Pqp Pqu
Py �w Pyp Pyu

�
� �

�
���������


 
 

s

s � ��




 
 
 � 

�

s��s � ���
� �

��

s � ��

�

s��s � ���


 
 

�s

s � ��



�
���������

����
��

with feedback perturbation set

� � ���� � � �������
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The closed�loop transfer matrices are given by

Hq �w �

�
�

s��s � ���
S

�

s� ��
T

��

s� ��
T

�
� �������

H�zp �

�
���

s

s � ��
S

s


s� ��
T

�
��� � �������

Hqp �
�s

s� � ���
T �

�

s � ��
� �����
�

�The reader worried that these transfer matrices may be unstable should recall
that the interpolation conditions of section 
���� require that T ���� � �� similar
conditions guarantee that these transfer matrices are proper� and have no pole at
s � ���

Relative Uncertainty in P�

The plant perturbation set ������� can be expressed in the perturbation feedback
form shown in �gure ������ for which

�
� P�z �w P�zp P�zu

Pq �w Pqp Pqu
Py �w Pyp Pyu

�
� �

�
���


 
 
 Wrel errP� 


 
 
 � 

� � � � �

 
 
 �Wrel errP� 


�
��� � �������

and

� � f� j k�k� � �g � �������

In this case the feedback perturbations are normalized unknown�but�bounded trans�
fer functions� that cause the transfer function P� to become �� � Wrel err��P��

For this perturbation feedback form� the transfer matrices Hq �w� H�zp� and Hqp

are given by

Hq �w �
�
�T �T�P� T�P�

�
� �������

H�zp �

�
Wrel errP�S
�Wrel errT

�
� �����
�

Hqp � �Wrel errT� �����	�

Saturating Actuators

We consider the perturbed plant set ������� which consists of the single nonlinear
system fP nonling� This can be expressed in perturbation feedback form by express�
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P�u

nproc yp nsensor r

yr

�

�
r

�

�
r

�

�
r

�

�
q q

�q p

Wrel err

Figure ����� A perturbation feedback form for the plant perturbation
set ��������

ing each saturator as a straight signal path perturbed by a dead�zone nonlinearity�

Dz�a�
�
� a� Sat�a��

as shown in �gure ������

P lin

�w

u

�
�z

y

���

���
���

�nonlin

r

�

�

r

�

�

q

q

q

	�

��

��

�� p

Figure ����� The nonlinear system shown in 	gure ���� is redrawn as
the nominal plant� which is LTI� connected to �nonlin� which is a dead�zone
nonlinearity�

This perturbation feedback form is described by the augmented plant�
� P�z �w P�zp P�zu

Pq �w Pqp Pqu
Py �w Pyp Pyu

�
� �

�
�� P lin

zw
�P lin

zu P lin
zu

� � I

P lin
yw �P lin

yu P lin
yu

�
�� � �������



10.4 SMALL GAIN METHOD FOR ROBUST STABILITY 231

and � � f�nonling� where p � �nonlin�q� is de�ned by

pi�t� � SiDz�qi�t��Si�� i � �� � � � � nu� �������

In this case the feedback perturbation �nonlin is a memoryless nonlinearity�
For this perturbation feedback form� the transfer matrices Hq �w� H�zp� and Hqp

are given by

Hq �w � K�I � P lin
yuK���P lin

yw� �������

H�zp � �P lin
zu �I �KP lin

yu ���� �������

Hqp � �KP lin
yu �I �KP lin

yu ���� �����
�

10.4 Small Gain Method for Robust Stability

10.4.1 A Convex Inner Approximation

We consider a perturbed plant set P that is given by a perturbation feedback form�
Suppose that the norm k 	kgn is a gain �see chapter ��� Let M denote the maximum
gain of the possible feedback perturbations� i�e��

M � sup
���

k�kgn� �������

M is thus a measure of how �big� the feedback perturbations can be�
Then from the small gain theorem described in section ����� �equations ������

��
�� with H� � � and H� � Hqp� we know that if

kHqpkgnM � � �������

then we have for all � ���

����I �Hqp����
��
gn
�

M

��MkHqpkgn
�

From �����
� we therefore have

��Hpert����H�z �w

��
gn
�

MkH�zpkgnkHq �wkgn
��MkHqpkgn

for all � ��� �������

We will refer to the closed�loop convex speci�cation ������� as the small gain condi�

tion �for the perturbation feedback form and gain used�� ������� and ������� are a
precise statement of the idea expressed in section ���
��� the closed�loop system will
be robust if the three closed�loop transfer matrices H�zp� Hq �w� and Hqp are �small
enough��



232 CHAPTER 10 ROBUSTNESS SPECIFICATIONS VIA GAIN BOUNDS

It follows that the closed�loop convex speci�cation on H given by

kHqpkgn � ��M� �����
�

kH�zpkgn �
� �����	�

kHq �wkgn �
� �������

kH�z �wkgn �
� �������

implies that

kHpertkgn �
 for all � ��� �������

i�e�� the robustness speci�cation formed from the perturbed plant set P and the
speci�cation kHkgn � 
 holds� If the gain k 	 kgn is �nite only for stable transfer
matrices� then the speci�cation �����
������� implies that Hpert is stable� and thus
the speci�cation �����
������� is stronger than the speci�cation of robust stability�
In this case� we may think of the speci�cation �����
������� as a closed�loop convex
speci�cation that guarantees robust stability�

As a more speci�c example� the RMS gain �H� norm� k 	 k� is �nite only for
stable transfer matrices� so the speci�cation kHqpk� � ��M � along with stability
of H�zp� Hq �w� and H�z �w �which is usually implied by internal stability�� guarantees
that the robust stability speci�cation Drob stab holds for H�

The speci�cation �����
������� can be used to form a convex inner approxi�
mation of a robust generalized stability speci�cation� for various generalizations of
internal stability �see section 
���� by using other gains� As an example� consider
the a�shifted H� norm� which is �nite if and only if the poles of its argument have
real parts less than �a� If the speci�cation �����
������� holds for this norm� then
we may conclude that the feedback perturbations cannot cause the poles of the
closed�loop system to have real parts equal to or exceeding �a� �We comment that
changing the gain used will generally change M � and will give a di�erent speci�ca�
tion��

Since the small gain condition ������� depends only on M � the largest gain of
the feedback perturbations� it follows that the conclusion ������� actually holds for
a set of feedback perturbations that may be larger than ��

�
sgt � f� j k�kgn �Mg ���

By using di�erent perturbation feedback forms of a perturbed plant set� and
di�erent gains that are �nite only for stable transfer matrices� the small gain condi�
tion ������� can be used to form di�erent convex inner approximations of the robust
stability speci�cation�

10.4.2 An Extrapolated First Order Bound

It is interesting to compare ������� to a corresponding bound that is based on a
�rst order di�erential analysis� Since

��I �Hqp���� � �
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�recall that � means equals� to �rst order in ��� the �rst order variation in the
closed�loop transfer matrix is given by

Hpert����H�z �w � H�zp�Hq �w �������

�c�f� the exact expression given in �����
��� If we use this �rst order analysis to
extrapolate the e�ects of any � ��� we have the approximate bound��Hpert����H�z �w

��
gn �

� MkH�zpkgnkHq �wkgn �����
�

�c�f� the small gain bound given in �������� �� means that the inequality holds to
�rst order in ���

The small gain bound ������� can be interpreted as the extrapolated �rst order
di�erential bound �����
�� aggravated �increased� by a term that represents the
�margin� in the small gain condition� i�e�

�

��MkHqpkgn
� �������

Of course� the small gain bound ������� is correct� whereas extrapolations from the
�rst order bound �����
� need not hold�

Continuing this comparison� we can interpret the term ������� as representing
the higher order e�ects of the feedback perturbation �� since

�

��MkHqpkgn
� � � �MkHqpkgn� � �MkHqpkgn�

�
� �MkHqpkgn�



� 	 	 	 �

The bound �����
�� which keeps just the �rst term in this series� only accounts for
the �rst order e�ects�

It is interesting that the transfer matrix Hqp� which is important in the small gain
based approximation of robust stability� has no e�ect whatever on the �rst order
change in H� given by �������� Thus Hqp� the feedback �seen� by the feedback
perturbation� has no �rst order e�ects� but is key to robust stability�

Conversely� the transfer matrices H�zp and Hq �w� which by ������� determine the
�rst order variation of H with respect to changes in �� have little to do with robust
stability� Thus� di�erential sensitivity of H� which depends only on Hq �w and H�zp�
and robust stability� which depends only on Hqp� measure di�erent aspects of the
robustness of the closed�loop system�

10.4.3 Nonlinear or Time-Varying Perturbations

A variation of the small gain method can be used to form an inner approximation
of the robust stability speci�cation� when the feedback perturbations are nonlinear
or time�varying� In this case we de�ne M by

M � sup

�
k�wksig
kwksig

���� � ��� kwksig 	 �

�
�������
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where k 	 ksig denotes the norm on signals that determines the gain k 	 kgn�
With this de�nition of M �which coincides with ������� when each � � � is

LTI�� the speci�cation �����
������� implies robust stability� In fact� a close analog
of ������� holds� for all � �� and exogenous inputs �w� we have���zpert � �z

��
sig
� �k �wksig�

where

� �
MkH�zpkgnkHq �wkgn

��MkHqpkgn
�

Thus� we have a bound on the perturbations in the regulated variables that can be
induced by the nonlinear or time�varying perturbations�

10.4.4 Examples

In this section we apply the small gain method to form inner approximations of
some of the robust stability speci�cations that we have considered so far� In a
few cases we will derive di�erent convex inner approximations of the same robust
stability speci�cation� either by using di�erent perturbation feedback forms for the
same perturbed plant set� or by using di�erent gains in the small gain theorem�

Neglected Dynamics: RMS Gain

We now consider the speci�cation of internal stability along with the robust stability
speci�cation for the perturbation plant set ����
�� i�e�� Drob stab � Dstable� We will
use the perturbation feedback form given by �������������� The speci�cation that
H�z �w� Hq �w� and H�zp are stable is weaker than Dstable� so we will concentrate on
the small gain condition �����
�� No matter which gain we use� M is one� since �
contains only one transfer matrix� the �� � identity matrix�

We �rst use the RMS gain� i�e�� the H� norm k 	 k�� which is �nite only for
stable transfer matrices� The small gain condition is then

kHqpk� �

�����
�
�P

���
err T �TP

���
err

P
���
err S �TP

���
err

������
�

� �� �������

The closed�loop convex speci�cation ������� �together with internal stability� is
stronger than the robust stability speci�cation Drob stab with the plant perturba�
tion set ������� �together with internal stability�� if ������� is satis�ed� then the
corresponding controller also stabilizes P cmplx�

We can interpret the speci�cation ������� as limiting the bandwidth of the
closed�loop system� The speci�cation ������� can be crudely considered a frequency�

dependent limit on the size of T � since P
���
err and P

���
err are each highpass �lters� this

limit is large for low frequencies� but less than one at high frequencies where P
���
err and
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P
���
err have magnitudes nearly one� e�g�� � � ���� Thus� ������� requires that jT �j��j

is less than one above about � � ���� in classical terms� the control bandwidth is
less than ���rad�sec� Figure ������a� shows the actual region of the complex plane
that the speci�cation ������� requires T ���j� to lie in� �gure ������b� shows the
same region for T ����j��

�a�

�
T
�

�
j�

�T �
�j�
�� �� � � �
��

��

�

�

�

�b�

�
T
�

�
�
j�

�T �
��j�
�� �� � � �
��

��

�

�

�

Figure ����� The speci	cation ������� requires T �j�� to lie in the shaded
region �a� for � � 
�� and �b� for � � 
���

Neglected Dynamics: Scaled RMS Gain

We now apply the small gain method to the same example� using the same pertur�
bation feedback form� substituting a scaled H� norm for the H� norm used above
�see section ��
���� We use the scaling

D �

�
� �
� �

�
�

and the associated scaled gain�

kDHqpD
��k� �

�����
�
�P

���
err T ��TP

���
err

P
���
err S�� �TP

���
err

������
�

�

This norm is �nite only for stable transfer matrices� so the small gain condition�����
�
�P

���
err T ��TP

���
err

P
���
err S�� �TP

���
err

������
�

� �� �����
�

together with internal stability� is stronger than the robust stability speci�cation
Drob stab with the plant perturbation set ������� �together with internal stability��
Like the speci�cation �������� the speci�cation �����
� can be thought of as limiting
the bandwidth of the closed�loop system�
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Figure ����
�a� shows the actual region of the complex plane that the spec�
i�cation �����
� requires T ���j� to lie in� �gure ����
�b� shows the same region
for T ����j�� comparing these �gures to �gures ������a� and ������b�� we see that
the two inner approximations of robust stability given by ������� and �����
� are
di�erent� neither is stronger than the other�

�a�

�
T
�

�
j�

�T �
�j�
�� �� � � �
��

��

�

�

�

�b�

�
T
�

�
�
j�

�T �
��j�
�� �� � � �
��

��

�

�

�

Figure ����� The speci	cation ������� requires T �j�� to lie in the shaded
region �a� for � � 
�� and �b� for � � 
��� The boundaries of the regions
from 	gure ������ for the speci	cation �������� are shown with a dashed
line�

Gain Margin: Perturbation Feedback Form 1

We now consider the gain margin speci�cation� using the RMS gain in the small
gain theorem� with the perturbation feedback form given by ����������
��� The
maximum of the RMS gains of the perturbations is

M � maxfkL� �k�� kU � �k�g � maxf�� L� U � �g�

For this perturbation feedback form� Hqp � �T � so the small gain condition is

kTk� � ��M � min

�
�

�� L
�

�

U � �

�
�

For the speci�c gain margins of ��dB and �
��dB� i�e�� the robustness speci�ca�
tion ������� the convex inner approximation is

kTk� � ��
�� �����	�

The closed�loop convex speci�cation �����	� is stronger than the gain margin
speci�cation �������
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Gain Margin: Perturbation Feedback Form 2

We now use the second perturbation feedback form for the gain margin problem�
given by ����
�����
��� For this perturbation feedback form� we have

M � maxf��L� �� �� ��Ug�

and Hqp � S� so the small gain condition is

kSk� � ��M � min

�
L

�� L
�

U

U � �

�
� �������

For the speci�c gain margins of ��dB� �
��dB� we have

kSk� � ����� ����
��

The closed�loop convex speci�cation ����
�� is a di�erent inner approximation
of the gain margin speci�cation ������ than �����	��

Thus we have

kTk� � ��
� �
 D�	��
��db gm� kSk� � ���� �
 D�	��
��db gm�

but neither of the convex speci�cations on the left�hand sides is stronger than the
other� We can contrast the two speci�cations by expressing ����
�� as k�� Tk� �
����� see �gure ����	�

�
T
�j
�
�

�T �j��

�

j�� T �j��j � 
��


�

jT �j��j � ����

�� �� � � � � �
��

��

��

�

�

�

�

Figure ����
 The speci	cations ������� and ������� require the complex
number T �j�� to lie in the indicated circles at each frequency ��
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A Generalized Gain Margin

We consider again the perturbed plant set for the gain margin speci�cation� but
tighten our robustness speci�cation to require that the perturbed closed�loop system
should have a stability degree that exceeds a 	 �� i�e�� the poles of Hpert should have
real parts less than �a� To form a convex inner approximation of this robustness
speci�cation� we apply the small gain method to the perturbation feedback form
given by ����
�����
�� and the a�shifted H� norm� For this norm �indeed� for any
gain� we �nd that

M � maxf��L� �� �� ��Ug�

just as for the unshifted H� norm�
The convex inner approximation is then� H�z �w� H�zp� and Hq �w �given in ����
��

���
	�� have stability degrees exceeding a �i�e�� �nite k 	 k��a norms� and

kSk��a � min

�
L

�� L
�

U

U � �

�
�

For the speci�c generalized gain margin of ��dB� �
��dB� with a minimum stability
degree of ���� we have the convex inner approximation

kSk����� � ����� ����
��

Pole Variation

We now consider the perturbed plant set ������ from section ������� We will form
the small gain condition using the perturbation feedback form ����
��������� and
the RMS gain� The maximum RMS gain of the feedback perturbations is �� so we
have the approximation���� �s

s� � ���
T �

�

s � ��

����
�

� ���� ����
��

We can interpret this closed�loop convex speci�cation as follows� The weighting
on T is a bandpass �lter� whose peak magnitude is ���� at � � ��� The speci�ca�
tion ����
��� roughly speaking� constrains T for frequencies near � � ���

Relative Uncertainty in P�

We will use the perturbation feedback form ������� described above� with the RMS
gain� In this case we have M � �� so the small gain condition becomes the weighted
H� norm speci�cation

kWrel errTk� � �� ����

�

This requires that the magnitude of T lie below the frequency�dependent limit
��jWrel err�j��j� as shown in �gure ������
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Figure ����� A convex inner approximation of robust stability with the
relative plant uncertainty ������ requires that the magnitude of T lie below
the frequency�dependent limit ��jWrel err�j��j�

Saturating Actuators

We consider the perturbed plant set �������� with the perturbation feedback form
given by ������� and �������� We will use the RMS gain or H� norm� From
formula ������� we �nd that M � �� since the RMS value of the dead�zone output
is less than the RMS value of its input� and for large constant signals� the two RMS
values are close� The small gain condition for robust stability is thus

kKP lin
yu �I �KP lin

yu ���k� � �� ����
��

Thus� if the closed�loop convex speci�cation ����
�� is satis�ed� then an LTI
controller designed on the basis of the linear model P lin will at least stabilize the
nonlinear system that includes the actuator saturation�

10.5 Small Gain Method for Robust Performance

10.5.1 A Convex Inner Approximation

A variation of the small gain method can be used to form convex inner approxima�
tions of robustness speci�cations that involve a gain bound such as

kH�z �wkgn � ��
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where H�z �w is some entry or submatrix of H �c�f� robust stability� which involves
the gain bound kH�z �wk� �
��

Throughout this section� we will consider the robustness speci�cation that is
formed from the perturbed plant set P and the RMS gain bound speci�cation

kH�z �wk� � �� ����
��

We will refer to this robust performance speci�cation as Drob perf � We will also
assume that the perturbed plant set P is described by a perturbation feedback
form for which the maximum RMS gain of the feedback perturbations is one� i�e��
M � � in ��������

The inner approximation of Drob perf is����
�
H�z �w H�zp

Hq �w Hqp

�����
�

� �� ����
��

Like the inner approximation �����
������� of the robust stability speci�cation
Drob stab� we can interpret ����
�� as limiting the size of H�zp� Hq �w� and Hqp�

Let us show that ����
�� implies that the speci�cation ����
�� holds robustly�
i�e��

kH�z �w � H�zp� �I �Hqp����Hq �wk� � � for all � ��� ����

�

Assume that ����
�� holds� so that for any signals �w and p we have����
�

�z
q

�����
rms

�

����
�

�w
p

�����
rms

� ����
	�

where �
�z
q

�
�

�
H�z �w H�zp

Hq �w Hqp

� �
�w
p

�
�

The inequality ����
	� can be rewritten

k�zk�rms � kqk�rms � k �wk�rms � kpk�rms� ����
��

Now assume that p � �q� where � � �� so that these signals correspond to
closed�loop behavior of the perturbed system� i�e��

�z �
�
H�z �w � H�zp� �I �Hqp��

��
Hq �w

�
�w� ����	��

Since k�k� � �� we have

kpkrms � kqkrms� ����	��

From ����
�����	�� we conclude that

k�zkrms �
����H�z �w � H�zp� �I �Hqp����Hq �w

�
�w
���
rms

� k �wkrms�
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Since this holds for any �w� ����

� follows�

Doyle has interpreted the speci�cation ����
�� as a small gain based robust
stability condition ������� for a perturbed plant set that includes an unknown�but�
bounded transfer matrix connected from �z to �w� This �performance loop� is shown
in �gure ������

If the condition ����
�� holds� then the closed�loop system in �gure ����� is
robustly stable for all �� with k ��k� � �� In particular� the closed�loop system in
�gure ����� will be robustly stable for all �� of the form

�� �

�
� �
� �perf

�
�

with k�k� � � and k�perfk� � �� This is equivalent to the speci�cation ����
��
holding robustly for all � with k�k� � ��

H

�

�w �z

qp

w

	�

��

��

�� z

�perf

��

Figure ���	� Doyle�s performance loop connects a feedback �perf from
the critical regulated variable �z back to the critical exogenous input �w� If
the resulting system is robustly stable �with k�perfk� � � and k�k� �
��� then the original system robustly satis	es the performance speci	cation
kH�z �wk� � ��

10.5.2 An Example

We consider the plant perturbation set �������� i�e�� frequency�dependent relative
uncertainty in the transfer function P�� and the robustness speci�cation �������
which limits the RMS gain from the reference input to the actuator signal to be less
than or equal to 
�� for all possible perturbations�
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Applying the method above yields the convex speci�cation����
�
T��
�P�� �Wrel errT
T��
�P�� �Wrel errT

�����
�

� �� ����	��

which guarantees that the robust performance speci�cation holds�
The inner approximation ����	�� can be simpli�ed by factoring T out of the

matrix� and assuming T is stable� in which case it is equivalent to

jT �j��j �

��
���
�P��j��� �Wrel err�j��
���
�P��j��� �Wrel err�j��

��

� jT �j��j
p

� �jWrel err�j��j� � j���
�P��j���j�� � � for � � R�

Hence� ����	�� is equivalent to the speci�cation that T be stable and satisfy the
frequency�dependent magnitude limit

jT �j��j �
�p

� �jWrel err�j��j� � j���
�P��j���j��
for � � R� ����	
�

which is plotted in �gure ������ The reader should compare the speci�cation ����	
�
to ����

�� which guarantees robust stability� and is also plotted in �gure ������
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Figure ���	� If the closed�loop transfer function T is stable and its magni�
tude lies below the limit shown� then the relative uncertainty in P� cannot
cause the perturbed closed�loop transfer function from reference input to
actuator signal to have RMS gain exceeding ��� The dotted limit shows the
previously determined bound that guarantees closed�loop stability despite
the relative uncertainty in P� �see 	gure ����
�� The dashed line is the
bound imposed by the performance speci	cation kT�P�k� � ��� For this
example� the speci	cation of robust stability and nominal performance is
not much looser than the small gain based inner approximation of robust
performance�
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Notes and References

Comparison with Differential Sensitivity

In �Lun�	� p����	�� Lunze states�

Sensitivity is a local property that describes how strongly the system perfor�
mance is a�ected by very small perturbations around a given nominal point �a�
No information about the amount of perturbations is used� However� as many
properties depend continuously on the parameter vector a� extrapolations can
be made from very small to 	nite deviations� Therefore� sensitivity analysis
yields guidelines for the attenuation of severe parameter perturbation and�
hence� the achievement of robustness� But sensitivity analysis alone cannot
ensure this robustness because the range of validity of the results is not known�

�See also table ��� in �Lun�	� p�	���

The distinction between parametrized and other perturbed plant sets is not as clear as it
might seem� In �Boy���� it is observed that robust stability speci	cations with unknown�
but�bounded transfer function perturbations can be recast as robust stability speci	cations
with parametrized plant perturbation sets� �There does not appear to be any advantage
in doing so��

Relation to Classical Control Ideas

Many of the small gain based approximations of robustness speci	cations that we have
seen can be interpreted as limiting the magnitude of T or S� The idea that a closed�loop
system with �large� T or S can be very sensitive to changes in P� is well�known in classical
control� the speci	cation kTk� � M is called an M �circle constraint� Horowitz �Hor���
p
��� states

� � � it is not necessarily a useful practical system� if the locus �of L� passes very
close to the �� point� In the 	rst place� a slight change of gain or time constant
may su�ciently shift the locus so as to lead to an unstable system� In the
second place� the closed�loop system response has � � L for its denominator�
At those frequencies for which L is close to ��� � �L is close to zero� leading
to large peaking in the system frequency response�

A classical interpretation of the small gain speci	cation kSk� � � is that the Nyquist
plot maintains a distance of at least ��� from the critical point �� �see �BBN	����

For a discussion of singular perturbations of control systems� see Kokotovic� Khalil� and
O�Reilly �KKO����

Small Gain Methods

Small gain methods are discussed in the books by Desoer and Vidyasagar �DV��� and
Vidyasagar �Vid���� In most discussions the method is used to establish stability despite
nonlinear and time�varying perturbations�

The small gain theorem for linear � is a basic result of Functional Analysis� often attributed
to Banach� see� e�g�� Kantorovich and Akilov �KA��� p
���� Its use in the analysis of
feedback systems was introduced by Zames �Zam��a��
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Many papers that discuss robustness speci	cations and small gain approaches are reprinted
in the volume edited by Dorato �Dor���� see also the recent books by Lunze �Lun�	� ch���
and Maciejowski �Mac�	� x��
���

Conservatism of Small Gain Methods

Since the small gain method yields inner approximations of robustness speci	cations� it is
natural to ask how �conservative� these approximations can be� Doyle� Wall� Stein� Chen�
and Desoer �DWS��� DS�
� CD��b� observed that for the special case when

� � f� j k�k� �M g �

the small gain condition for robust stability� i�e��

kHqpk� � ��M�

is exactly equivalent to the robust stability speci	cation� and not just an approximation�
In such cases� therefore� the speci	cation of robust stability is closed�loop convex� Thus
in our example of robust stability despite relative uncertainty in P�� the small gain condi�
tion ������� is the same as the robust stability speci	cation�

In other cases the approximation can be arbitrarily conservative� see for example the papers
by Doyle �Doy��� Doy��� and Safonov and Doyle �SD���� These papers suggest various
ways this conservatism can be reduced� for example� by choosing an optimally�scaled norm
for the small gain theorem� �We saw in our unmodeled plant dynamics example that scaling
can a�ect the inner approximation produced by the small gain method�� But limits on the
optimally�scaled gain are not closed�loop convex�

In these papers� Doyle introduces the structured singular value� if the structured singular
value is substituted for the norm�bound in the small gain theorem� then there is no con�
servatism for robust stability problems with certain types of feedback perturbation sets�
Speci	cations that limit the structured singular value are� however� not closed�loop convex�

Small Gain Theorem and Lyapunov Stability

Many of the speci	cations that we have encountered in this chapter have the form of a
�possibly weighted� H� norm�bound on Hqp� If such a speci	cation is satis	ed� then
we can compute the positive de	nite solution X of the ARE ����
� as we described in
section ������ This matrix provides a Lyapunov function� V �z� � zTXz� that proves that
robust stability holds� See �BBK�	� and �Wil����

Circle Theorem

Several of the small gain robustness speci	cations that we encountered can be interpreted
as instances of the circle criterion� developed by Zames �Zam��b�� Sandberg �San���� and
Narendra and Goldwyn �NG���� Multivariable versions were developed by Safonov and
Athans �Saf��� SA�
� and others� Part III of the collection edited by MacFarlane �Mac�	�
contains reprints of many of these original articles�

Boyd� Barratt� and Norman �BBN	�� show that a general circle criterion speci	cation is
closed�loop convex�
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About the Examples
The gain margin speci	cation has been completely analyzed by Tannenbaum in �Tan���
and �Tan���� his analysis shows that it is not closed�loop convex� indeed� the set of transfer
matrices that satisfy a gain margin speci	cation need not be connected�

The convex inner approximation ������� of the generalized gain margin� which limits the
shifted H� norm of S� is a special form of a generalized circle theorem �Moore �Moo�����

The robust performance speci	cation example turns out to be closed�loop convex� since it
can be shown to be equivalent to

jWrel err�j��T �j��j� j������T �j���P��j��j � � for all ��

In fact� for the ��DOF control system� most robust performance speci	cations that are
expressed in terms of weighted H� norm�bounds also turn out to be closed�loop convex�
Another example is described in Francis �Fra���� and discussed in Boyd� Barratt and
Norman �BBN	���

Robust Performance Method
This method was introduced by Doyle in �Doy��� Doy���� and is discussed in Ma�
ciejowski �Mac�	� x��
���

Describing Function Method
The describing function method is described in �GV��� and �Vid��� ch��� Several mod�
i	cations can make the describing function method nonheuristic� see� e�g�� Mees and
Bergen �MB����

An Extension of the Saturating Actuators Example
We saw that it may be possible to design an LTI controller for a plant that is linear except
for saturating actuators� in such a way that we can guarantee that the resulting nonlinear
closed�loop system is stable� by requiring the speci	cation ������� to be met� In this section
we brie y describe an extension of this idea that has been very useful in practice� and is
interesting because the method e�ectively synthesizes a nonlinear controller�

The control system architecture is shown in 	gure ���

� The nonlinear controller Knonlin

consists of a two�input� one�output LTI system� with its output saturated and fed back to
its 	rst input� the output is identical to the signal that drives P lin�

We redraw this control system as shown in 	gure ���
�� and consider the dead�zone non�
linearity as a perturbation� We augment our design speci	cations with the small gain
condition kHqpk� � �� any resulting design is guaranteed to yield a stable nonlinear
closed�loop system� �Indeed� by our comments above� we can produce a Lyapunov func�
tion that proves stability of the closed�loop system��

This scheme is discussed in� for example� !Astr"om and Wittenmark �AW	��� and Morari
and Za	rou �MZ�	� x�������
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Figure ���		 The nonlinear controllerKnonlin consists of a two�input� one�
output LTI system� with its output saturated and fed back to its 	rst input
�this is the signal that drives P lin��
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Figure ���	� The saturators in 	gure ���

 are treated as a dead�zone
nonlinearity perturbation to a linear system�
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Chapter 11

A Pictorial Example

The sets of transfer matrices that satisfy speci�cations are generally in�nite�
dimensional� In this chapter we consider our standard example described in
section ��� with an additional two�dimensional a�ne speci�cation� This allows us
to visualize a two�dimensional �slice� through the various speci�cations we have
encountered� The reader can directly see� for this example� that speci�cations we
have claimed are convex are indeed convex�

Recall from section ��� that H�a�� H�b�� and H�c� are the closed�loop transfer ma�
trices resulting from the three controllers K�a�� K�b�� and K�c� given there� The
closed�loop a�ne speci�cation

Hslice �
n
H

��� H � �H�a� � �H�b� � 	
� �� ��H�c� for some �� � � R
o

requires H to lie on the plane passing through these three transfer matrices� The
speci�cation Hslice has no practical use� but we will use it throughout this chapter
to allow us to plot two�dimensional �slices
 through other 	useful� speci�cations�

Figure 

�
 shows the subset �
 � � � �� �
 � � � � of Hslice� Most plots that
we will see in this chapter use this range� Each point in �gure 

�
 corresponds to
a closed�loop transfer matrix� for example� H�a� corresponds to the point � � 
�
� � �� H�b� corresponds to the point � � �� � � 
� and H�c� corresponds to the
point � � �� � � �� Also shown in �gure 

�
 are the points

���H�a� � ���H�b� � ��
H�c� and � ���H�a� � ���H�b� � 
��H�c��

Each point in �gure 

�
 also corresponds to a particular controller� although we
will not usually be concerned with the controller itself� The controller that realizes
the closed�loop transfer matrix

�H�a� � �H�b� � 	
� �� ��H�c�

can be computed by two applications of equation 	��
�� from chapter ��

249
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Figure ���� Each point 	�� �
 corresponds to a closed�loop transfer matrix

H that lies in the plane through H�a�� H�b�� and H�c��

Many of the �gures in this chapter show level curves of functionals on Hslice�
i�e��

n
�� ��T

��� �
�
�H�a� � �H�b� � 	
� �� ��H�c�

�
� �

o
�

For quasiconvex functionals this set might not be a connected curve� so we de�ne
the level curve to be the boundary of the convex set

n
�� ��T

��� �
�
�H�a� � �H�b� � 	
� �� ��H�c�

�
� �

o
�

In most cases these two de�nitions agree�

11.1 I/O Specifications

11.1.1 A Settling Time Limit

The step responses from the reference input r to yp for the three closed�loop systems
are shown in �gure 

��� Figure 

�� shows the level curves of the reference r to yp
settling�time functional �settle� i�e��

�settle

�
�H

�a�
�� � �H

�b�
�� � 	
� �� ��H

�c�
��

�
� 	

�
�

Recall from section ��
�
 that �settle� and therefore 	

�
�� are quasiconvex� From
�gure 

�� it can be seen that the level curves bound convex subsets�
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Figure ���� The step responses from the reference input� r� to plant out�
put� yp� for the closed�loop transfer matrices H�a�� H�b�� and H�c��
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Figure ���� Level curves of the step response settling time� from the
reference r to yp� given by 	����
�
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11.1.2 Some Worst Case Tracking Error Specifications

We now consider the tracking error� For our example� the tracking error transfer
function is given by

H�� � 


	we have not set up our example with the tracking error explicitly included in
the regulated variables�� Figure 

�� shows the level curves of the weighted peak
tracking error� i�e��

�pk trk	�� ��
�
�
���W

�
�H

�a�
�� � �H

�b�
�� � 	
� �� ��H

�c�
�� � 


����
pk gn

� 	

���

where the weight is

W 	s� �



�s� 

�

	We use the symbol � to denote the restriction of a functional to a �nite�dimensional
domain�� Recall from section ��
�� that the weighted peak tracking error is a convex
functional of H� and therefore �pk trk is a convex function of � and �� From
�gure 

�� it can be seen that the level curves bound convex subsets�

Figure 

�� shows the level curves of the peak tracking error� for reference inputs
bounded and slew�rate limited by 
� i�e��

����H�a�
�� � �H

�b�
�� � 	
� �� ��H

�c�
�� � 


���
wc

� 	

���

In section ����� we showed that a function of the form 	

��� is convex� as expected�
the level curves in �gure 

�� bound convex subsets of Hslice�

In section ����� we showed that� for any transfer function H�

kHWkpk gn � kHkwc � �kHWkpk gn�

The reader should compare the level curves in �gures 

�� and 

�� with this relation
in mind�
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Figure ���� Level curves of the weighted peak tracking error� given
by 	����
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Figure ���� Level curves of the peak tracking error� for reference inputs
bounded and slew�rate limited by �� given by 	����
�
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11.2 Regulation

11.2.1 Asymptotic Rejection of Constant Disturbances

We �rst consider the e�ect on yp of a constant disturbance applied to nproc� Fig�
ure 

�� shows the subset of Hslice where such a disturbance asymptotically has no
e�ect on yp� i�e�� where the a�ne function

�H
�a�
�� 	�� � �H

�b�
�� 	�� � 	
� �� ��H

�c�
�� 	�� 	

���

vanishes�

�

�

���
H��	

 � 


H��	

 � 


H��	

 � 


�� ���� � ��� � ��� �
��

����

�

���

�

���

�

Figure ���� Asymptotic rejection of constant actuator�referred distur�
bances on yp�

11.2.2 Rejection of a Particular Disturbance

Suppose now that an actuator�referred disturbance is the waveform dpart	t� shown
in �gure 

��� Figure 

�� shows the level curves of the peak output yp due to the
actuator�referred disturbance dpart� i�e��

���
�
�H

�a�
�� � �H

�b�
�� � 	
� �� ��H

�c�
��

�
dpart

���
�
� 	

���

which is a convex function on R��
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Figure ���� A particular actuator�referred process disturbance signal�
dpart	t
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Figure ���� Level curves of the peak of yp due to the particular actuator�
referred disturbance dpart	t
 shown in �gure ����� given by 	����
�
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11.2.3 RMS Regulation

Suppose that nproc and nsensor are independent� zero�mean stochastic processes with
power spectral densities

Sproc	�� �W �
proc�

Ssensor	�� �W �
sensor�

where

Wproc � �����

Wsensor � ���


	i�e�� scaled white noises�� Figure 

�� shows the level curves of the RMS value of
yp due to these noises� i�e�� the level curves of the function

�rms yp	�� ��
�
� �rms yp

�
�H�a� � �H�b� � 	
� �� ��H�c�

�
� 	

���

where

�rms yp	H�
�
�
�
kH��Wprock

�
� � kH��Wsensork

�
�

����
� 	

���

Recall from section ����� that the RMS response to independent stochastic inputs
with known power spectral densities is a convex functional of H� therefore �rms yp

is a convex function of H� and �rms yp is a convex function of � and ��

11.3 Actuator Effort

11.3.1 A Particular Disturbance

We consider again the particular actuator�referred disturbance dpart	t� shown in
�gure 

��� Figure 

�
� shows the peak actuator signal u due to the actuator�
referred disturbance dpart� i�e��

���
�
�H

�a�
�� � �H

�b�
�� � 	
� �� ��H

�c�
��

�
dpart

���
�
� 	

���

which is a convex function on R��

11.3.2 RMS Limit

Figure 

�

 shows the level curves of the RMS value of u due to the noises described
in section 

����� i�e�� the level curves of the function

�rms u

�
�H�a� � �H�b� � 	
� �� ��H�c�

�
� 	

���
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Figure ���	 Level curves of the RMS value of yp� with sensor and actuator
noises� given by 	����
�
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Figure ����
 Level curves of the peak actuator signal u� due to the par�
ticular actuator�referred disturbance dpart	t
 shown in �gure ����� given
by 	����
�
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where

�rms u	H�
�
�
�
kH��Wprock

�
� � kH��Wsensork

�
�

����
� 	

�
��

Recall from section ����� that the RMS response to independent stochastic inputs
with known power spectral densities is a convex functional of H� therefore �rms u

is a convex function of H� and 	

��� is a convex function of � and ��

�

�

����

���

��	�

���

����

���

��	�

����

���

��	�

�� ���� � ��� � ��� �
��

����

�

���

�

���

�

Figure ����� Level curves of the RMS value of the actuator signal u� with
sensor and actuator noises� given by 	����
�

11.3.3 RMS Gain Limit

Figure 

�
� shows the level curves of the worst case RMS actuator signal u for any
reference input r with RMS value bounded by 
� i�e��

����H�a�
�� � �H

�b�
�� � 	
� �� ��H

�c�
��

���
�
� 	

�

�
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Figure ����� Level curves of the worst case RMS actuator signal u for
any reference input r with RMS value bounded by �� given by 	�����
�
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11.4 Sensitivity Specifications

11.4.1 A Log Sensitivity Specification

We consider the plant perturbation

�P std
� 	s� � �P std

� 	s��

i�e�� a gain variation in P std
� 	see section ��
���� Figure 

�
� shows the level curves of

the maximum logarithmic sensitivity of the magnitude of the I�O transfer function
H��� over the frequency range � � � � 
� to these gain changes� i�e��

sup
�����

�����
	

	�

����
���

log jH��	j��j

����� � max
�����

j�S	j��j � 	

�
��

where

S	j�� � 
�
�
�H

�a�
�� 	j�� � �H

�b�
�� 	j�� � 	
� �� ��H

�c�
�� 	j��

�
�

As expected� the level curves in �gure 

�
� bound convex subsets of Hslice�

�

�

���
���

���
���

���
���

��	
���

���

���

���

��	

���

�� ���� � ��� � ��� �
��

����

�

���

�

���

�

Figure ����� Level curves of the logarithmic sensitivity of the magnitude
of the I�O transfer function H��� over the frequency range 
 � � � �� to
gain changes in the plant P std

� � given by 	�����
�

When the function 	

�
�� takes on the value ���� the maximum �rst order
change in jH��	j��j� over � � � � 
� with a ��� plant gain change is exp	�������
or ����dB� In �gure 

�
� the actual maximum change in jH��	j��j is shown for
points on the ��� contour of the function 	

�
���
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q����dB

q����dB
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q����dB

q

����dB

�� ���� � ��� � ��� �

��

����

�

���

�

���

�

Figure ����� To 	rst order
 the peak change in jH���j��j for � � � � �
along the �
� contour in 	gure ��
��
 for a ��� gain change in P std

� 
 will be
����dB
 The �
� contour from 	gure ��
�� is shown
 together with the actual
peak change in jH���j��j for � � � � � for several points on the contour


11.4.2 A Step Response Sensitivity Specification

In section ��� we considered the sensitivity of the I�O step response at t � � to
plant gain changes� i�e�� �P std

� � �P std
� �

s���	
�
�

�s��	

��

����
���

�

Figure ����
 shows the subset of Hslice for which

js���	j � ���
�

This speci
cation is equivalent to���� ���
Z
�

��

��� T �j�		T �j�	

j�
ej� d�

���� � ���
� ������	

where

T �j�	 � �H
�a�
�� �j�	 � �H

�b�
�� �j�	 � ��� �� �	H

�c�
�� �j�	�

As we showed in section ���� and as is clear from 
gure ����
� the step response
sensitivity speci
cation ������	 is not convex�
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Figure ����� The subset of Hslice that has an I�O step response sensi�
tivity magnitude
 at t � �
 of less than ����
 This is the set of points for
which ���
��� holds


11.5 Robustness Specifications

11.5.1 Gain Margin

We now consider the gain margin speci
cation D������	db gm� the system should
remain stable for gain changes in P std

� between ��dB and ���
dB� In section ������
we used the small gain theorem to show that

kTk� � ���� ������	

kSk� � ���� �����
	

are �di�erent	 inner approximations of the gain margin speci
cation D������	db gm�

Figure ����� shows the subset of Hslice that meets the gain margin speci
cation
D������	db gm� together with the two inner approximations �����������
	� i�e������H�a�

�� � �H
�b�
�� � ��� �� �	H

�c�
��

���
�

� ���� ������	����� ��H�a�
�� � �H

�b�
�� � ��� �� �	H

�c�
��

����
�

� ����� ������	

In general� the speci
cation D������	db gm is not convex� even though in this case
the subset of Hslice that satis
es D������	db gm is convex� The two inner approx�
imations ������������	 are norm�bounds on H� and are therefore convex �see sec�
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tion �����	� The two approximations ������������	 are convex subsets of the exact
region that satis
es D������	db gm�

�

�

��I
exact

��I
k��H��k� � ����

�
��

kH��k� � ����

��� �� �� �� �� � � � � � ��

��

����

��

����

�

���

�

���

Figure ����� The boundary of the region where the gain margin speci	�
cation D�������db gm is met is shown
 together with the boundaries of the
two inner approximations ���
�����
���
 In this case the exact region turns
out to be convex
 but this is not generally so


The bound on the sensitivity transfer function magnitude given by ������	 is an
inner approximation to each gain margin speci
cation� Figure ����� shows the level
curves of the peak magnitude of the sensitivity transfer function� i�e��

	max sens��� �	
�
�
����� �

�H
�a�
�� � �H

�b�
�� � ��� �� �	H

�c�
��

����
�

� ������	

In section ����� we showed that a function of the form ������	 is convex� the level
curves in 
gure ����� do indeed bound convex subsets of Hslice�

11.5.2 Generalized Gain Margin

We now consider a tighter gain margin speci
cation than D������	db gm� for plant
gain changes between ��dB and ���
dB the stability degree exceeds ���� i�e�� the
closed�loop system poles have real parts less than ����� In section ������ we used
the small gain theorem to show that

kSk����
 � ���� ������	

is an inner approximation of this generalized gain margin speci
cation�
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Figure ����� The level curves of the sensitivity transfer function magni�
tude
 given by ���
���


Figure ����� shows the subset of Hslice that meets the generalized gain margin
speci
cation� together with the inner approximation ������	� i�e������� ��H�a�

�� � �H
�b�
�� � ��� �� �	H

�c�
��

����
����


� ����� ������	

The generalized gain margin speci
cation is not in general convex� even though in
this case the subset of Hslice that satis
es the generalized gain margin speci
cation
is convex� The inner approximation ������	 is a norm�bound on H� and is therefore
convex �see section �����	�

11.5.3 Robust Stability with Relative Plant Uncertainty

Figure ����� shows the subset of Hslice that meets the speci
cation

Drob stab�P	� ������	

where P is the plant perturbation set ������	� i�e�� robust stability with the relative
plant uncertainty Wrel err described in section ������� The speci
cation ������	 is
equivalent to the convex inner approximation���Wrel err

�
�H

�a�
�� � �H

�b�
�� � ��� �� �	H

�c�
��

����
�


 � ������	

derived from the small gain theorem in section ������� i�e�� in this case the small
gain theorem is not conservative �see the Notes and References in chapter ��	�
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Figure ����� The boundary of the exact region where the generalized gain
margin speci	cation is met is shown
 together with the boundary of the inner
approximation ���
���
 This speci	cation is tighter than the speci	cation
D�������db gm shown in 	gure ��
��
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�
��� ��� ��� �� � � �� �� ��
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����
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�

���

Figure ����� The region where the robust stability speci	cation ���
��� is
met is shaded
 This region is the same as the inner approximation ���
���
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11.5.4 Robust Performance

Figure ����� shows the subset of Hslice that meets the speci
cation

Drob�P� kH
�k� � �
	� ������	

where P is the plant perturbation set ������	� i�e�� the plant perturbations described
in section ������ never cause the RMS gain from the reference input to the actuator
signal to exceed �
� In section ���
�� we showed that an inner approximation of the
speci
cation ������	 is����H�a�

�� �j�	 � �H
�b�
�� �j�	 � ��� �� �	H

�c�
�� �j�	

��� 
 l��	 for � � R ������	

�note that H
� � H���P
std
� 	� where

l��	 �
�q

�
�jWrel err�j�	j
 � j����
P std

� �j�		j
� �
which is also shown in 
gure ������ The exact region is not in general convex�
although in this case it happens to be convex �see the Notes and References in
chapter ��	�
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�

���

�

���

Figure ����	 The boundary of the exact region where the robust perfor�
mance speci	cation ���
��� is met is shown
 together with the inner approx�
imation ���
���


Figure ����� shows the exact speci
cation ������	� together with the convex inner
approximation ������	 and a convex outer approximation �i�e�� a speci
cation that
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is weaker than ������		� The outer approximation is the simultaneous satisfaction
of the speci
cations

Drob stab�P	 and kH
�k� � �
� �����
	

described in sections ���
�� and ������ respectively� The speci
cations �����
	 re�
quire robust stability� and that the nominal system has an RMS gain from the
reference to actuator signal not exceeding �
� The robust performance speci
ca�
tion ������	 therefore implies �����
	� so �����
	 is an outer approximation of the
robust performance speci
cation ������	� The outer approximation in 
gure �����
is the set of �� � for which

���Wrel err

�
�H

�a�
�� � �H

�b�
�� � ��� �� �	H

�c�
��

����
�


 ������H�a�

� � �H

�b�

� � ��� �� �	H

�c�

�

���
�

� �
�
������	

�see 
gure �����	�
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���

Figure ����� The boundary of the exact region where the robust perfor�
mance speci	cation ���
��� is met is shown
 together with the inner approx�
imation ���
��� and the outer approximation ���
���
 The outer approxi�
mation is the intersection of the nominal performance speci	cation and the
robust stability speci	cation �see 	gures ��
�� and ��
���
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11.6 Nonconvex Design Specifications

11.6.1 Controller Stability

Figure ����� shows the subset of Hslice that is achieved by an open�loop stable
controller� i�e���

�� ��T
���� �H�a� � �H�b� � ��� �� �	H�c� is

achieved by a stable controller K

�
� ������	

From 
gure ������ we see that ������	 is a nonconvex subset of Hslice� We conclude
that a speci
cation requiring open�loop controller stability�

Hk stab �

�
H

���� H � Pzw � PzuK�I � PyuK	��Pyw
for some stable K that stabilizes P

�
�

is not in general convex�

�

�
�� �� �� �� �� � � � �

��

����

�

���

�

���

�

���

�

Figure ����� Region where the closed�loop transfer matrix H is achieved
by a controller that is open�loop stable
 It is not convex


11.7 A Weighted-Max Functional

Consider the functional

	wt max��� �	
�
� max f	pk trk��� �	� ��
	max sens��� �	� �
	rms yp��� �	g �



11.7 A WEIGHTED-MAX FUNCTIONAL 269

where the functions 	pk trk� 	max sens� and 	rms yp are given by �����	� ������	�
and �����	� The level curves of the function 	wt max��� �	 are shown in 
gure ������
The function 	wt max will be used for several examples in chapter ���
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�

Figure ����
 The level curves of �wt max��� ��
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Notes and References

How These Figures Were Computed
Most level curves of convex functions were plotted using a radial bisection method
 Con�
sider the problem of plotting the ��H� � � level curve onHslice
 where � is convex
 Assume
that we know some point ���� ��� inside this level curve
 i�e�

�
�
��H

�a� � ��H
�b� � ��� �� � ���H

�c�
�
� ��

The value of � along the radial line segment

� � �� � 	 cos�
�� � � �� � 	 sin�
�� ���
���

where 	 � �
 is

���	�
	
� �

�
��� � 	 cos�
��

�
H�a� �H�c�

�
� ��� � 	 sin�
��

�
H�b� �H�c�

�
�H�c�

�
�

For each 

 �� is a convex function from R� to R with ����� � �
 so there is no more
than one 	 � � for which

���	� � �� ���
���

���
��� can be solved using a number of standard methods
 such as bisection or regula
falsi
 with only an evaluation of �� required at each iteration
 As 
 sweeps out the angles
� � 
 � ��
 the solution 	 to ���
���
 together with ���
���
 sweeps out the desired level
curve
 This method was used for 	gures ��
�
 ��
�
 ��
��
 ��
��
 ��
��
 ��
��
 ��
��
 ��
��

and ��
��


The above method also applies to quasiconvex functionals with the following modi	cation�
in place of ���
��� we need to 	nd the largest 	 for which ���	� � �


In certain cases ���
���
 or its quasiconvex modi	cation
 can be solved directly
 For ex�
ample
 consider the quasiconvex settling�time functional �settle from section ��
�
�
 For a
	xed 

 the step response along the line ���
��� is of the form

s��t� � 	s��t��

where s� is the step response of

��H
�a�
�� � ��H

�b�
�� � ��� �� � ���H

�c�
�� �

and s� is the step response of

cos�
�H
�a�
�� � sin�
�H

�b�
�� � �� cos�
�� sin�
��H

�c�
�� �

The largest value of 	 for which ���	� � Tmax is given by

	� � max
���� � s��t� � 	s��t� � ���� for t � Tmax

	�
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This is a linear program in the scalar variable 	 that can be directly solved


A similar method was used to produce 	gures ��
� and ��
��
 A similar method could
also be used to produce level curves of H� norms� at each frequency � a quadratic in 	
can be solved to 	nd the positive value of 	 that makes the frequency response magnitude
tight at �
 Taking the minimum 	 over all � gives the desired 	�


Figures ��
� and ��
�� were plotted by directly computing the equations of the level
curves using a state�space method
 For example
 consider kH��k

�
�
 which is one term in

the functional �rms yp
 Since

�H
�a�
�� � �H

�b�
�� � ��� �� ��H

�c�
�� � H�c� � �

�
H�a� �H�c�

�
� �

�
H�a� �H�c�

�
is a�ne in � and �
 it has a state�space realization

C�sI �A����B� � �B� � �B���

where C is a row vector
 and B�
 B� and B� are column vectors
 From section �
�
�
 if
Wobs is the solution to the Lyapunov equation

ATWobs �WobsA� CTC � ��

we have

����H�a�
�� � �H

�b�
�� � ��� �� ��H

�c�
��

����
�
�
�
� � �

	
E



�
�
�

�
�

where

E �

�

 BT

�

BT
�

BT
�

�
�Wobs

�
B� B� B�

	

is a positive de	nite � � � matrix
 The level curves of kH��k� on Hslice are therefore
ellipses


The convex sets shown in 	gures ��
�� and ��
�� were produced using the standard radial
method described above
 The exact contour along which the gain margin speci	cation
was tight was also found by a radial method
 However
 since this speci	cation need not
be convex
 a 	ne grid search was also used to verify that the entire set had been correctly
determined


The step response sensitivity plot in 	gure ��
�� was produced by forming an inde	nite
quadratic in � and �
 The sensitivity
 from ���
���
 is the step response of

�
��

�
�H

�a�
�� � �H

�b�
�� � ��� �� ��H

�c�
��

���
�H

�a�
�� � �H

�b�
�� � ��� �� ��H

�c�
��

�
at t � �
 After expansion
 the step response of each term
 at t � �
 gives each of the
coe�cients in an inde	nite quadratic form in � and �
 Figure ��
�� shows the �
 � for
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which

����� �
�
� � �

	 
 ������ ������� ������
������� ������� ������
������ ������ �������

�

�
�
�

�
� �����

The controller stability plot in 	gure ��
�� was produced by 	nding points where the
transfer function S�j����� vanished for some frequency �
 Since S � ���� � P std

� K�
vanishes wherever P std

� or K has a j� axis pole
 the j� axis poles of K are exactly the
j� axis zeros of S�j������ the factor of �� cancels the two zeros at s � � that S inherits
from the two s � � poles of P std

� 
 At each frequency �
 the linear equations in � and �

�
�
��

�
�H

�a�
�� �j�� � �H

�b�
�� �j�� � ��� �� ��H

�c�
�� �j��

���
�� � ��

�
�
��

�
�H

�a�
�� �j�� � �H

�b�
�� �j�� � ��� �� ��H

�c�
�� �j��

���
�� � �

may be dependent
 independent
 or inconsistent� their solution in the 	rst two cases gives
either a line or point in the ��� �� plane
 When these lines and points are plotted over
all frequencies they determine subsets of Hslice over which the controller K has a constant
number of unstable �right half�plane� poles
 By checking any one controller inside each
subset ofHslice for open�loop stability
 each subset ofHslice can be labeled as being achieved
by stable or unstable controllers
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Chapter 12

Some Analytic Solutions

We describe several families of controller design problems that can be solved
rapidly and exactly using standard methods


12.1 Linear Quadratic Regulator

The linear quadratic regulator �LQR	 from optimal control theory can be used to
solve a family of regulator design problems in which the state is accessible and regu�
lation and actuator e�ort are each measured by mean�square deviation� A stochastic
formulation of the LQR problem is convenient for us� a more usual formulation is
as an optimal control problem �see the Notes and References at the end of this
chapter	� The system is described by

�x � Ax�Bu� w�

where w is a zero�mean white noise� i�e�� w has power spectral density matrix
Sw��	 � I for all �� The state x is available to the controller� so y � x in our
framework�

The LQR cost function is the sum of the steady�state mean�square weighted
state x� and the steady�state mean�square weighted actuator signal u�

Jlqr � lim
t��

E
�
x�t	TQx�t	 � u�t	TRu�t	

�
�

where Q and R are positive semide
nite weight matrices� the 
rst term penalizes
deviations of x from zero� and the second term represents the cost of using the
actuator signal� We can express this cost in our framework by forming the regulated
output signal

z �

�
R

�

�u

Q
�

�x

�
�
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so that

Jlqr � lim
t��

E z�t	T z�t	�

the mean�square deviation of z� Since w is a white noise� we have �see section 
����	

Jlqr � kHk

�
the square of the H
 norm of the closed�loop transfer matrix�

In our framework� the plant for the LQR regulator problem is given by

AP � A

Bu � B

Bw � I

Cz �

�
�

Q
�

�

�
Cy � I

Dzw � �

Dzu �

�
R

�

�

�

�
Dyw � �

Dyu � �

�the matrices on left�hand side refer to the state�space equations from section ��
	�
This is shown in 
gure �����

�sI �A	��

w

u y

o
z

x
B Q���

R���

r

�

�

K

q q

P

Figure ���� The LQR cost is kHk��


The speci
cations that we consider are realizability and the functional inequality
speci
cation

kHk
 � �� �����	
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Standard assumptions are that �Q�A	 is observable� �A�B	 is controllable� and
R � �� in which case the speci
cation �����	 is stronger than �i�e�� implies	 internal
stability� �Recall our comment in chapter � that internal stability is often a redun�
dant addition to a sensible set of speci
cations�	 With these standard assumptions�
there is actually a controller that achieves the smallest achievable LQR cost� and it
turns out to be a constant state�feedback�

Klqr�s	 � �Ksfb�

which can be found as follows�
Let Xlqr denote the unique positive de
nite solution of the algebraic Riccati

equation

ATXlqr �XlqrA�XlqrBR
��BTXlqr �Q � �� �����	

One method of 
nding this Xlqr is to form the associated Hamiltonian matrix

M �

�
A �BR��BT

�Q �AT

�
� �����	

and then compute any matrix T such that

T��MT �

�
�A��

�A�


� �A



�
�

where �A�� is stable� �One good choice is to compute an ordered Schur form of M� �
see the Notes and References in chapter 
�	 We then partition T as

T �

�
T�� T�

T
� T



�
�

and the solution Xlqr is given by

Xlqr � T
�T
��
�� �

�We encountered a similar ARE in section 
����� this solution method is analogous
to the one described there�	

Once we have found Xlqr� we have

Ksfb � R��BTXlqr�

which achieves LQR cost

J�lqr � TrXlqr�

In particular� the speci
cation �����	 �along with realizability	 is achievable if and
only if � � p

TrXlqr� in which case the LQR�optimal controller Klqr achieves the
speci
cations�

In practice� this analytic solution is not used to solve the feasibility problem for
the one�dimensional family of speci
cations indexed by �� rather it is used to solve
multicriterion optimization problems involving actuator e�ort and state excursion�
by solving the LQR problem for various weights R and Q� This is explained further
in section �������
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12.2 Linear Quadratic Gaussian Regulator

The linear quadratic Gaussian �LQG	 problem is a generalization of the LQR prob�
lem to the case in which the state is not sensed directly� For the LQG problem we
consider the system given by

�x � Ax�Bu� wproc �����	

y � Cx� vsensor� ����
	

where the process noise wproc and measurement noise vsensor are independent and
have constant power spectral density matrices W and V � respectively�

The LQG cost function is the sum of the steady�state mean�square weighted
state x� and the steady�state mean�square weighted actuator signal u�

Jlqg � lim
t��

E
�
x�t	TQx�t	 � u�t	TRu�t	

�
� �����	

where Q and R are positive semide
nite weight matrices�
This LQG problem can be cast in our framework as follows� Just as in the

LQR problem� we extract the �weighted	 plant state x and actuator signal u as the
regulated output� i�e��

z �

�
R

�

�u

Q
�

�x

�
�

The exogenous input consists of the process and measurement noises� which we
represent as�

wproc

vsensor

�
�

�
W

�

�

V
�

�

�
w�

with w a white noise signal� i�e�� Sw��	 � I� The state�space description of the
plant for the LQG problem is thus

AP � A �����	

Bw �
�
W

�

� �
	

�����	

Bu � B �����	

Cz �

�
�

Q
�

�

�
������	

Cy � C ������	

Dzw �

�
� �
� �

�
������	

Dzu �

�
R

�

�

�

�
������	

Dyw �
�
� V

�

�

	
������	

Dyu � �� �����
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This is shown in 
gure �����

�sI �A	��

w
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o
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noise

measurement noise

r

�

�

r

�

�

K

q q

P

Figure ���� The LQG cost is kHk��


Since w is a white noise� the LQG cost is simply the variance of z� which is given
by

Jlqg � kHk

�
The speci
cations for the LQG problem are therefore the same as for the LQR
problem� realizability and the H
 norm�bound �����	�

Standard assumptions for the LQG problem are that the plant is controllable
from each of u and w� observable from each of z and y� a positive weight is used
for the actuator signal �R � �	� and the sensor noise satis
es V � �� With these
standard assumptions in force� there is a unique controller Klqg that minimizes
the LQG objective� This controller has the form of an estimated�state�feedback
controller �see section ���	� the optimal state�feedback and estimator gains� Ksfb

and Lest� can be determined by solving two algebraic Riccati equations as follows�
The state�feedback gain is given by

Ksfb � R��BTXlqg� ������	

where Xlqg is the unique positive de
nite solution of the Riccati equation

ATXlqg �XlqgA�XlqgBR
��BTXlqg �Q � �� ������	

which is the same as �����	� The estimator gain is given by

Lest � YlqgC
TV ��� ������	
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where Ylqg is the unique positive de
nite solution of

AYlqg � YlqgA
T � YlqgC

TV ��CYlqg �W � � ������	

�which can be solved using the methods already described in sections ���� and 
����	�
The LQG�optimal controller Klqg is thus

Klqg�s	 � �Ksfb�sI �A�BKsfb � LestC	
��Lest� ������	

and the optimal LQG cost is

J�lqg � Tr �XlqgW �QYlqg � �XlqgAYlqg	 � ������	

The speci
cation kHk
 � � �along with realizability	 is therefore achievable if and

only if � �
q
J�lqg� in which case the LQG�optimal controller Klqg satis
es the

speci
cations�

12.2.1 Multicriterion LQG Problem

The LQG objective �����	 can be interpreted as a weighted�sum objective for a
related multicriterion optimization problem� We consider the same system as in the
LQG problem� given by ���������
	� the objectives are the variances of the actuator
signals�

ku�k
rms� � � � � kunuk
rms�

and some critical variables that are linear combinations of the system state�

kc�xk
rms� � � � � kcmxk
rms�

where the process and measurement noises are the same as for the LQG problem
�c�� � � � � cm are row vectors that determine the critical variables	�

We describe this multicriterion optimization problem in our framework as fol�
lows� We use the same plant as for the LQG problem� substituting

z �

�
��������


u�
���
unu
c�x
���
cmx

�
���������

for the regulated output used there� The state�space plant equations for the multi�
criterion LQG problem are therefore given by ����������
	� with

Cz �

�
���


�
c�
���
cm

�
����
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substituted for ������	 and

Dzu �

�
I
�

�
substituted for ������	� The objectives are given by the squares of the H
 norms of
the rows of the closed�loop transfer matrix�


i�H	
�
� kH�i�k

�

where H�i� is the ith row of H and L � nz � nu �m� The hard constraint for this
multicriterion optimization problem is realizability�

For � � i � nu� 
i�H	 represents the variance of the ith actuator signal� and for
nu � � � i � L� 
i�H	 represents the variance of the critical variable ci�nux� The
design speci
cation


��H	 � a�� � � � � 
L�H	 � aL� ������	

therefore� limits the RMS values of the actuator signals and critical variables�
Consider the weighted�sum objective associated with this multicriterion opti�

mization problem�


wt sum�H	 � ��
��H	 � � � �� �L
L�H	� ������	

where � � �� We can express this as


wt sum�H	 � Jlqg

if we choose weight matrices

Q � �nu��c
T
� c� � � � �� �Lc

T
mcm� ������	

R � diag ���� � � � � �m	 �����
	

�diag ��	 is the diagonal matrix with diagonal entries given by the argument list	�
Hence by solving an LQG problem� we can 
nd the optimal design for the

weighted�sum objective for the multicriterion optimization problem with functionals

�� � � � � 
L� These designs are Pareto optimal for the multicriterion optimization
problem� moreover� because the objective functionals and the hard constraint are
convex� every Pareto optimal design arises this way for some choice of the weights
��� � � � � �L �see section ��
	� Roughly speaking� by varying the weights for the LQG
problem� we can �search� the whole tradeo� surface�

We note that by solving an LQG problem� we can evaluate the dual function �
described in section ������

���	 � min f��
��H	 � � � �� �L
L�H	 j H is realizable g
� J�lqg�

given by ������	� using the weights �����������
	� We will use this fact in sec�
tion ���
� where we describe an algorithm for solving the feasibility problem ������	�
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12.3 Minimum Entropy Regulator

The LQG solution method described in section ���� was recently modi
ed to 
nd
the controller that minimizes the ��entropy of H� de
ned in section 
���
� Since
the ��entropy of H is 
nite if and only if its H� norm is less than �� this analytic
solution method can be used to solve the feasibility problem with the inequality
speci
cation kHk� 
 ��

The plant is identical to the one considered for the LQG problem� given by ������
����
	� we also make the same standard assumptions for the plant that we made
for the LQG case� The design speci
cations are realizability and the H� norm
inequality speci
cation

kHk� 
 � ������	

�which are stronger than internal stability under the standard assumptions	� We
will show how to solve the feasibility problem for this one�dimensional family of
design speci
cations�

It turns out that if the design speci
cation ������	 �along with realizability	 is
achievable� then it is achievable by a controller that is� except for a scale factor�
an estimated�state�feedback controller� This controller can be found as follows� If
� is such that the speci
cation ������	 is feasible� then the two algebraic Riccati
equations

ATXme �XmeA�Xme�BR
��BT � ��
W 	Xme �Q � � ������	

�c�f� ������		� and

AYme � YmeA
T � Yme�C

TV ��C � ��
Q	Yme �W � � ������	

�c�f� ������		 have unique positive de
nite solutionsXme and Yme� respectively� �The
mnemonic subscript �me� stands for �minimum entropy��	 These solutions can be
found by the method described in section ����� using the associated Hamiltonian
matrices�

A ��BR��BT � ��
W 	
�Q �AT

�
�

�
A �W

��CTV ��C � ��
Q	 �AT

�
�

if either of these matrices has imaginary eigenvalues� then the corresponding ARE
does not have a positive de
nite solution� and the speci
cation ������	 is not feasible�

From Xme and Yme we form the matrix

Xme�I � ��
YmeXme	
��� ������	

which can be shown to be symmetric� If this matrix is not positive de
nite �or the
inverse fails to exist	� then the speci
cation ������	 �along with realizability	 is not
feasible�
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If� on the other hand� the positive de
nite solutions Xme and Yme exist� and the
matrix ������	 exists and is positive de
nite� then the speci
cation ������	 �along
with realizability	 is feasible� Let

Ksfb � R��BTXme�I � ��
YmeXme	
�� ������	

and

Lest � YmeC
TV �� ������	

�c�f� ������	 and ������		� A controller that achieves the design speci
cations is
given by

Kme�s	 � �Ksfb

�
sI �A�BKsfb � LestC � ��
YmeQ

�
��

Lest

�c�f� the LQG�optimal controller ������		�

12.4 A Simple Rise Time, Undershoot Example

In this section and the next we show how to 
nd explicit solutions for two speci
c
plants and families of design speci
cations�

We consider the classical ��DOF system of section ����� with

P��s	 �
s� �

�s� �	

�

It is well�known in classical control that since P� has a real unstable zero at s � ��
the step response from the reference input r to the system output yp� s���t	� must
exhibit some undershoot� We will study exactly how much it must undershoot� when
we require that a stabilizing controller also meet a minimum rise�time speci
cation�

Our design speci
cations are internal stability� a limit on undershoot�


us�H��	 � Umax� ������	

and a limit on rise time�


rise�H��	 � Tmax� ������	

Thus we have a two�parameter family of design speci
cations� indexed by Umax and
Tmax�

These design speci
cations are simple enough that we can readily solve the
feasibility problem for each Umax and Tmax� We will see� however� that these design
speci
cations are not complete enough to guarantee reasonable controller designs�
for example� they include no limit on actuator e�ort� We will return to this point
later�
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We can express the design speci
cation of internal stability in terms of the
interpolation conditions �section ����
	 for T � the I�O transfer function� T is stable
and satis
es

T ��	 � T ��	 � �� ������	

This in turn can be expressed in terms of the step response s���t	� s�� is the step
response of a stable transfer function and satis
esZ

�

�

s���t	e
�t dt � �� �����
	

s����	 � �� ������	

Now if ������	 holds thenZ
�

Tmax

s���t	e
�t dt � ���

Z
�

Tmax

e�t dt � ���e�Tmax � ������	

If ������	 holds thenZ Tmax

�

s���t	e
�t dt � �Umax

Z Tmax

�

e�t dt � �Umax

�
�� e�Tmax

�
� ������	

Adding ������	 and ������	 we have

� �

Z
�

�

s���t	e
�t dt � ���e�Tmax � Umax

�
�� e�Tmax

�
�

Hence if the design speci
cations with Umax and Tmax are feasible�

Umax � ���e�Tmax

�� e�Tmax
�

This relation is shown in 
gure ����� We have shown that every achievable under�
shoot� rise�time speci
cation must lie in the shaded region of 
gure ����� in other
words� the shaded region in 
gure ���� includes the region of achievable speci
ca�
tions in performance space�

In fact� the speci
cations with limits Umax and Tmax are achievable if and only
if

Umax �
���e�Tmax

�� e�Tmax
� ������	

so that the shaded region in 
gure ���� is exactly the region of achievable speci
�
cations for our family of design speci
cations�

We will brie�y explain why this is true� Suppose that Umax and Tmax sat�
isfy ������	� We can then 
nd a step response s���t	 of a stable rational transfer
function� that satis
es the interpolation conditions �����
������	 and the overshoot
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Figure ���
 The tradeo� between achievable undershoot and rise�time
speci	cations


and undershoot limits� If Umax and Tmax are near the boundary of the region of
achievable speci
cations� this step response will have to �hug� �but not violate	
the two constraints� For Umax � ���� and Tmax � ��� �marked �X� in 
gure ����	
a suitable step response is shown in 
gure ����� it is the step response of a ��th
order transfer function �and corresponds to a controller K of order ��	� �A detailed
justi
cation that we can always design such a step response is quite cumbersome�
we have tried to give the general idea� See the Notes and References at the end of
this chapter for more detail about this particular transfer function�	

The rapid changes near t � � and t � � of the step response shown in 
gure ����
suggest very large actuator signals� and this can be veri
ed� It should be clear that
for speci
cations Umax� Tmax that are nearly Pareto optimal� such rapid changes in
the step response� and hence large actuator signals� will be necessary� So controllers
that achieve speci
cations near the tradeo� curve are probably not reasonable from
a practical point of view� but we point out that this �side information� that the
actuator signal should be limited was not included in our design speci
cations� The
fact that our speci
cations do not limit actuator e�ort� and therefore are probably
not sensible� is re�ected in the fact that the Pareto optimal speci
cations� which
satisfy

Umax �
���e�Tmax

�� e�Tmax
�

are not achievable �see the comments at the end of section ��
	�
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Figure ���� A step response with an undershoot of �
�� and a rise time of
�
�
 which achieves the speci	cations marked �X� in 	gure ��
�
 Undershoot
as small as ����� with a rise time of ��� are also achievable


The tradeo� curve in 
gure ���� is valuable even though the design speci
cations
do not limit actuator e�ort� If we add to our design speci
cations an appropriate
limit on actuator e�ort� the new tradeo� curve will lie above the one we have found�
Thus� our tradeo� curve identi
es design speci
cations that are not achievable� e�g��
Umax � ���� Tmax � ���� when no limit on actuator e�ort is made� a fortiori these
design speci
cations are not achievable when a limit on actuator e�ort is included�

We remark that the tradeo� for this example is considerably more general than
the reader might suspect� ������	 holds for

� any LTI plant with P���	 � ��

� the ��DOF controller con
guration�

� any nonlinear or time�varying controller�

This is because� no matter how the plant input u is generated� the output of P��
yp� must satisfy conditions of the form �����
������	�

12.5 A Weighted Peak Tracking Error Example

In this section we present a less trivial example of a plant and family of design
speci
cations for which we can explicitly solve the feasibility problem�
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We consider the classical ��DOF system of section ����� with

P��s	 �
s� �

s
 � �
�

Designing a controller for this plant is quite demanding� since it has an unstable
zero at s � � along with an unstable pole only an octave lower� at s � ��

Our design speci
cations will be internal stability and a limit on a weighted
peak gain of the closed�loop tracking error transfer function�

kWSkpk gn � Emax� ������	

where

W �s	 �
�

� � sTtrk
�

and �S is the closed�loop transfer function from the reference input r to the error
e � �r� yp �see sections 
���
 and �����	� Thus we have a two�parameter family of
design speci
cations� indexed by Emax and Ttrk�

Roughly speaking� Emax is an approximate limit on the worst case peak mis�
tracking that can occur with reference inputs that are bounded by one and have a
bandwidth ��Ttrk� Therefore� ��Ttrk represents a sort of tracking bandwidth for the
system� It seems intuitively clear� and turns out to be correct� that small Emax can
only be achieved at the cost of large Ttrk�

These design speci
cations are simple enough that we can explicitly solve the
feasibility problem for eachEmax and Ttrk� As in the previous section� however� these
design speci
cations are not complete enough to guarantee reasonable controller
designs� so the comments made in the previous section hold here as well�

As we did for the previous example� we express internal stability in terms of the
interpolation conditions� S is stable and satis
es

S��	 � �� S��	 � S��	 � ��

Equivalently� WS is stable� and satis
es

WS��	 � �� ������	

WS��	 � �� � �Ttrk	
��� ������	

lim
s��

sWS�s	 � T��trk � ������	

Let h be the impulse response of WS� so that

kWSkpk gn �

Z
�

�

jh�t	j dt
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�from ������	� h does not contain any impulse at t � �	� We can express the
interpolation conditions in terms of h asZ

�

�

h�t	e�t dt � �� ������	Z
�

�

h�t	e�
t dt � �� � �Ttrk	
��� �����
	

h��	 � T��trk � ������	

We will solve the feasibility problem by solving the optimization problem

min
subject to ������������	

Z
�

�

jh�t	j dt� ������	

In chapters ����
 we will describe general numerical methods for solving an in
nite�
dimensional convex optimization problem such as ������	� here we will use some
speci
c features to analytically determine the solution� We will 
rst guess a solution�
based on some informal reasoning� and then prove� using only simple arguments�
that our guess is correct�

We 
rst note that the third constraint� on h��	� should not a�ect the minimum�
since we can always adjust h very near t � � to satisfy this constraint� without
a�ecting the other two constraints� and only slightly changing the objective� It
can be shown that the value of the minimum does not change if we ignore this
constraint� so henceforth we will�

Now we consider the two integral constraints� From the second� we see that h�t	
will need to be positive over some time interval� and from the 
rst we see that h�t	
will also have to be negative over some other time interval� Since the integrand
e�
t falls o� more rapidly than e�t� it seems that the optimal h�t	 should 
rst be
positive� and later negative� to take advantage of these di�ering decay rates� Similar
reasoning 
nally leads us to guess that a nearly optimal h should satisfy

h�t	 � ���t	� ���t� T 	� ������	

where � and � are positive� and T is some appropriate time lapse� The objective is
then approximately �� ��

Given this form� we readily determine that the optimal �� �� and T are given
by

� �
�

� � �Ttrk

�
� �

�

�

p
�

�
� ������	

� �
�

� � �Ttrk

�
� �

�

�

p
�

�
� ����
�	

T � log�� �
p
�	� ����
�	
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which corresponds to an objective of

�

� � �Ttrk

�
� � �

p
�
�
� ����
�	

Our guess that the value of ������	 is given by ����
�	 is correct� To verify this�
we consider � � R� � R given by

��t	 � ��� � �
p
�	e�t � �� � �

p
�	e�
t� ����
�	

and plotted in 
gure ���
� This function has a maximum magnitude of one� i�e��
k�k� � ��

�
�t
	

t

� ��� � ��� � ��� � ��� �

����

��

����

�

���

�

���

Figure ���� The function 	�t� from ���
���


Now suppose that h satis
es the two integral equality constraints in ������	�
Then by linearity we must haveZ

�

�

h�t	��t	 dt �
�

� � �Ttrk

�
� � �

p
�
�
� ����
�	

Since j��t	j � � for all t� we haveZ
�

�

h�t	��t	 dt �
Z
�

�

jh�t	j dt � khk�� ����

	

Combining ����
�	 and ����

	� we see that for any h�Z
�

�

h�t	e�t dt � � and

Z
�

�

h�t	e�
t dt � �� � �Ttrk	
��
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�	 khk� � �

� � �Ttrk

�
� � �

p
�
�
�

i�e�� any h that satis
es the constraints in ������	 has an objective that exceeds the
objective of our candidate solution ����
�	� This proves that our guess is correct�
�The origin of this mysterious � is explained in the Notes and References�	

From our solution ����
�	 of the optimization problem ������	� we conclude that
the speci
cations corresponding to Emax and Ttrk are achievable if and only if

Emax�� � �Ttrk	 � � � �
p
�� ����
�	

�We leave the construction of a controller that meets the speci
cations for Emax

and Ttrk satisfying ����
�	 to the reader�	 This region of achievable speci
cations
is shown in 
gure �����

E
m
a
x

Ttrk

� ��� � ��� � ��� � ��� � ��� �
�

���

�

���

�

���

�

���

�

���

�

Figure ���� The tradeo� between peak tracking error and tracking band�
width speci	cations


Note that to guarantee that the worst case peak tracking error does not exceed
���� the weighting 
lter smoothing time constant must be at least Ttrk � ������
which is much greater than the time constants in the dynamics of P�� which are on
the order of one second� In classical terminology� the tracking bandwidth is consid�
erably smaller than the open�loop bandwidth� The necessarily poor performance
implied by the tradeo� curve ����
�	 is a quantitative expression that this plant is
�hard to control��
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Notes and References

LQR and LQG-Optimal Controllers
Standard references on LQR and LQG�optimal controllers are the books by Anderson
and Moore �AM���
 Kwakernaak and Sivan �KS���
 Bryson and Ho �BH���
 and the
special issue edited by Athans �Ath���
 �Astr�om and Wittenmark treat minimum variance
regulators in �AW���
 The same techniques are readily extended to solve problems that
involve an exponentially weighted H� norm� see
 e�g�
 Anderson and Moore �AM���


Multicriterion LQG
The articles by Toivonen �Toi��� and Toivonen and M�akil�a �TM��� discuss the multicri�
terion LQG problem� the latter article has extensive references to other articles on this
topic
 See also Koussoulas and Leondes �KL���


Controllers that Satisfy an H� Norm-Bound
In �Zam���
 Zames proposed that the H� norm of some appropriate closed�loop trans�
fer matrix be minimized
 although control design speci	cations that limit the magnitude
of closed�loop transfer functions appeared much earlier
 The state�space solution of sec�
tion ��
� is recent
 and is due to Doyle
 Glover
 Khargonekar
 and Francis �DGK��	 GD���

Previous solutions to the feasibility problem with an H� norm�bound on H were consid�
erably more complex


We noted above that the controller Kme of section ��
� not only satis	es the speci�
	cation ���
���� it minimizes the ��entropy of H
 This is discussed in Mustafa and
Glover �Mus��	 MG��	 GM���
 The minimum entropy controller was developed inde�
pendently by Whittle �Whi���
 who calls it the linear exponential quadratic Gaussian
�LEQG� optimal controller


Some Other Analytic Solutions
In �OF��	 OF���
 O�Young and Francis use Nevanlinna�Pick theory to deduce exact trade�
o� curves that limit the maximum magnitude of the sensitivity transfer function in two
di�erent frequency bands


Some analytic solutions to discrete�time problems involving the peak gain have been found
by Dahleh and Pearson� see �Vid��	 DP��b	 DP��b	 DP��a	 DP��a�


About Figure 12.4
The step response shown in 	gure ��
� was found as follows
 We let

T �s� �

��X
i
�

xi

�
��

s� ��

�i

� ���
���

where x � R�� is to be determined
 �See chapter �� for an explanation of this Ritz
approximation�� T �s� must satisfy the condition ���
���
 The constraint T ��� � � is
automatically satis	ed� the interpolation condition T ��� � � yields the equality constraint
on x


cTx � �� ���
���
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i xi i xi i xi i xi
� ������ � ������ �� ����� �� �����
� ����� � ������ �� ������ �� ������
� ������ � ������ �� ������ �� ������
� ����� � ����� �� �	���� �� �����
	 ����� �� ����� �	 ����� �� ������

Table ���� The coe
cients in the parametrization ����	�
 for the step
response in �gure �����

where ci � ������
i� The undershoot and rise�time speci�cations are

��X
i��

xisi�t
 � ���� for � � t � ���� ����	�


��X
i��

xisi�t
 � ��� for t � ���� ������


where si is the step response of �s��� � �
�i� By �nely discretizing t� ����	�
 and ������

yield �many
 linear inequality constraints on x� i�e�

aTk x � bk� k � �� � � � � L� ������


����	�
 and ������
 can be solved as a feasibility linear program� The particular coe
cients
that we used� shown in table ����� were found by minimizing kxk� subject to ����	�

and ������
�

About the Examples in Sections 12.4 and 12.5
These two examples can be expressed as in�nite�dimensional linear programming problems�
The references for the next two chapters are relevant� see also Luenberger �Lue���� Rock�
afellar �Roc��� Roc���� Reiland �Rei���� Anderson and Philpott �AP���� and Anderson
and Nash �AN����

We solved the problem ������
 �ignoring the third equality constraint
 by �rst solving its
dual problem� which is

max
k��e

�t � ��e
��tk� � �

���� � �Ttrk

��� ������


This is a convex optimization problem in R�� which is readily solved� The mysterious ��t

that we used corresponds exactly to the optimum �� and �� for this dual problem�

This dual problem is sometimes called a semi�in�nite optimization problem since the con�
straint involves a �continuum� of inequalities �i�e�� j��e

�t � ��e
��tj � � for each t � �
�

Special algorithms have been developed for these problems� see for example the surveys
by Polak �Pol���� Polak� Mayne� and Stimler �PMS���� and Hettich �Het����



Chapter 13

Elements of Convex Analysis

We describe some of the basic tools of convex nondi�erentiable analysis� sub�
gradients� directional derivatives� and supporting hyperplanes� emphasizing their
geometric interpretations� We show how to compute supporting hyperplanes and
subgradients for the various speci�cations and functionals described in previous
chapters�

Many of the speci�cations and functionals that we have encountered in chapters ��
�� are not smooth�the speci�cations can have �sharp corners� and the functionals
need not be di�erentiable	 Fortunately
 for convex sets and functionals
 some of
the most important analytical tools do not depend on smoothness	 In this chapter
we study these tools	 Perhaps more importantly
 there are simple and e�ective
algorithms for convex optimization that do not require smooth constraints or dif�
ferentiable objectives	 We will study some of these algorithms in the next chapter	

13.1 Subgradients

If � � Rn � R is convex and di�erentiable
 we have

�
z� � �
x� �r�
x�T 
z � x� for all z� 
��	��

This means that the plane tangent to the graph of � at x always lies below the
graph of �	 If � � Rn � R is convex
 but not necessarily di�erentiable
 we will say
that g � Rn is a subgradient of � at x if

�
z� � �
x� � gT 
z � x� for all z� 
��	��

From 
��	��
 the gradient of a di�erentiable convex function is always a subgradient	
A basic result of convex analysis is that every convex function always has at least
one subgradient at every point	 We will denote the set of all subgradients of � at x
as ��
x�
 the subdi�erential of � at x	

293
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We can think of the right�hand side of 
��	�� as an a�ne approximation to �
z�

which is exact at z � x	 The inequality 
��	�� states that the right�hand side is a
global lower bound on �	 This is shown in �gure ��	�	

x� x�

��R
��x
 ��I

slope g�

��I
slope �g�

���
slope g�

Figure ���� A convex function on R along with three a
ne global lower
bounds on � derived from subgradients� At x�� � is di�erentiable� and the
slope of the tangent line is g� � ���x�
� At x�� � is not di�erentiable� two
di�erent tangent lines� corresponding to subgradients g� and �g�� are shown�

We mention two important consequences of g � ��
x�	 For gT 
z � x� � � we
have �
z� � �
x�
 in other words
 in the half�space fz j gT 
z � x� � �g
 the values
of � exceed the value of � at x	 Thus if we are searching for an x� that minimizes
�
 and we know a subgradient g of � at x
 then we can rule out the entire half�space
gT 
z � x� � �	 The hyperplane gT 
z � x� � � is called a cut because it cuts o�
from consideration the half�space gT 
z � x� � � in a search for a minimizer	 This
is shown in �gure ��	�	

An extension of this idea will also be useful	 From 
��	��
 every z that satis�es
�
z� � �
 where � � �
x�
 must also satisfy gT 
z�x� � ���
x�	 If we are searching
for a z that satis�es �
z� � �
 we need not consider the half�space gT 
z � x� �
���
x�	 The hyperplane gT 
z�x� � ���
x� is called a deep�cut because it rules
out a larger set than the simple cut gT 
z � x� � �	 This is shown in �gure ��	�	

13.1.1 Subgradients: Infinite-Dimensional Case

The notion of a subgradient can be generalized to apply to functionals on in�nite�
dimensional spaces	 The books cited in the Notes and References at the end of this
chapter contain a detailed and precise treatment of this topic� in this book we will
give a simple 
but correct� description	
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q� x

q

x�
gT z � gTx

���
gT z � gTx

gT z � gTx

��z
 � ��x


g

Figure ���� A point x and a subgradient g of � at x� In the half�space
gT z � gTx� ��z
 exceeds ��x
� in particular� any minimizer x� of � must lie
in the half�space gT z � gTx�

q

�
x

��z
 � �

���
gT �z � x
 � �� ��x


g

Figure ���� A point x and a subgradient g of � at x determine a deep�cut
in the search for points that satisfy ��z
 � � �assuming x does not satisfy
this inequality
� The points in the shaded region need not be considered
since they all have ��z
 � ��
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If � is a convex functional on a 
possibly in�nite�dimensional� vector space V 

then we say �sg is a subgradient for � at v � V if �sg is a linear functional on V 

and we have

�
z� � �
v� � �sg
z � v� for all z � V� 
��	��

The subdi�erential ��
v� consists of all subgradients of � at v� note that it is a set
of linear functionals on V 	

If V � Rn
 then every linear functional on V has the form gT z for some vector
g � Rn
 and our two de�nitions of subgradient are therefore the same
 provided we
ignore the distinction between the vector g � Rn and the linear functional on Rn

given by the inner product with g	

13.1.2 Quasigradients

For quasiconvex functions
 there is a concept analogous to the subgradient	 Suppose
� � Rn � R is quasiconvex
 which we recall from section �	�	� means that

�
�x� 
�� ���x� � maxf�
x�� �
�x�g for all � � � � �� x� �x � Rn�

We say that g is a quasigradient for � at x if

�
z� � �
x� whenever gT 
z � x� � �� 
��	��

This simply means that the hyperplane gT 
z � x� � � forms a simple cut for �

exactly as in �gure ��	�� if we are searching for a minimizer of �
 we can rule out
the half�space gT 
z � x� � �	

If � is di�erentiable andr�
x� �� �
 thenr�
x� is a quasigradient� if � is convex

then 
��	�� shows that any subgradient is also a quasigradient	 It can be shown
that every quasiconvex function has at least one quasigradient at every point	 Note
that the length of a quasigradient is irrelevant 
for our purposes�� all that matters
is its direction
 or equivalently
 the cutting�plane for � that it determines	

Any algorithm for convex optimization that uses only the cutting�planes that
are determined by subgradients will also work for quasiconvex functions
 if we sub�
stitute quasigradients for subgradients	 It is not possible to form any deep�cut for
a quasiconvex function	

In the in�nite�dimensional case
 we will say that a linear functional �qg on V is
a quasigradient for the quasiconvex functional � at v � V if

�
z� � �
v� whenever �qg
z � v� � ��

As discussed above
 this agrees with our de�nition above for V � Rn
 provided we
do not distinguish between vectors and the associated inner product linear func�
tionals	
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13.1.3 Subgradients and Directional Derivatives

In this section we brie�y discuss the directional derivative
 a concept of di�erential
calculus that is more familiar than the subgradient	 We will not use this concept in
the optimization algorithms we present in the next chapter� we mention it because
it is used in descent methods
 the most common algorithms for optimization	

We de�ne the directional derivative of � at x in the direction �x as

��
x� �x�
�
� lim

h� �

�
x� h�x�� �
x�

h


the notation h � � means that h converges to � from above�	 It can be shown
that for convex � this limit always exists	 Of course
 if � is di�erentiable at x
 then

��
x� �x� � r�
x�T �x�

We say that �x is a descent direction for � at x if ��
x� �x� � �	
The directional derivative tells us how � changes if x is moved slightly in the

direction �x
 since for small h


�

�
x� h

�x

k�xk

�
� �
x� � h

��
x� �x�

k�xk
�

The steepest descent direction of � at x is de�ned as

�xsd � argmin
k�xk��

��
x� �x��

In general the directional derivatives
 descent directions
 and the steepest descent
direction of � at x can be described in terms of the subdi�erential at x 
see the
Notes and References at the end of the chapter�	 In many cases it is considerably
more di�cult to �nd a descent direction or the steepest descent direction of � at x
than a single subgradient of � at x	

If � is di�erentiable at x
 and r�
x� �� �
 then �r�
x� is a descent direction
for � at x	 It is not true
 however
 that the negative of any nonzero subgradient
provides a descent direction� we can have g � ��
x�
 g �� �
 but �g not a descent
direction for � at x	 As an example
 the level curves of a convex function � are
shown in �gure ��	�
a�
 together with a point x and a nonzero subgradient g	 Note
that � increases for any movement along the directions �g
 so
 in particular
 �g
is not a descent direction	 Negatives of the subgradients at non�optimal points
are
 however
 descent directions for the distance to a 
or any� minimizer
 i�e�
 if
�
x�� � �� and 	
z� � kz � x�k
 then 	�
x� �g� � � for any g � ��
x�	 Thus

moving slightly in the direction �g will decrease the distance to 
any� minimizer
x�
 as shown in �gure ��	�
b�	

A consequence of these properties is that the optimization algorithms described
in the next chapter do not necessarily generate sequences of decreasing functional
values 
as would a descent method�	
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�a


q

�
x

q

�

x�

g

�b


q� x
q

�
x�

g

Figure ���� A point x and a subgradient g of � at x is shown in �a
�
together with three level curves of �� Note that �g is not a descent direction
for � at x� � increases for any movement from x in the directions �g�
However� �g is a descent direction for the distance to any minimizer� In �b

the level curves for the distance ��z
 � kz � x�k are shown� �g points into
the circle through x�

13.2 Supporting Hyperplanes

If C is a convex subset of Rn and x is a point on its boundary
 then we say that the
hyperplane through x with normal g
 fz j gT 
z�x� � �g
 is a supporting hyperplane
to C at x if C is contained in the half�space gT 
z � x� � �	 Roughly speaking
 if
the set C is �smooth� at x
 then the plane that is tangent to C at x is a supporting
hyperplane
 and g is its outward normal at x
 as shown in �gure ��	�	 But the notion
of supporting hyperplane makes sense even when the set C is not �smooth� at x	 A
basic result of convex analysis is that there is at least one supporting hyperplane
at every boundary point of a convex set	

If C has the form of a functional inequality


C � fz j �
z� � �g�

where � is convex 
or quasiconvex�
 then a supporting hyperplane to C at a boundary
point x is simply gT 
z � x� � �
 where g is any subgradient 
or quasigradient�	

If C is a convex subset of the in�nite�dimensional space V and x is a point of its
boundary
 then we say that the hyperplane

�
z
�� �sh
z � x� � �

�
�

where �sh is nonzero linear functional on V 
 is a supporting hyperplane for C at
point x if

�sh
z � x� � � for all z � C�
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q� x

C

g

Figure ���� A point x on the boundary of a convex set C� A supporting
hyperplane gT �z�x
 � � for C at x is shown� C lies entirely in the half�space
gT �z � x
 � ��

Again we note that this general de�nition agrees with the one above for V � Rn

if we do not distinguish between vectors in Rn and their associated inner product
functionals	

13.3 Tools for Computing Subgradients

To use the algorithms that we will describe in the next two chapters we must be able
to evaluate convex functionals and �nd at least one subgradient at any point	 In
this section
 we list some useful tools for subgradient evaluation	 Roughly speaking

if one can evaluate a convex functional at a point
 then it is usually not much more
trouble to determine a subgradient at that point	

These tools come from more general results that describe all subgradients of
 for
example
 the sum or maximum of convex functionals	 These results can be found
in any of the references mentioned in the Notes and References at the end of this
chapter	 The more general results
 however
 are much more than we need
 since
our purpose is to show how to calculate one subgradient of a convex functional
at a point
 not all subgradients at a point
 a task which in many cases is very
di�cult
 and in any case not necessary for the algorithms we describe in the next
two chapters	 The more general results have many more technical conditions	

	 Di�erentiable functional � If � is convex and di�erentiable at x
 then its deriva�
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tive at x is an element of ��
x�	 
In fact
 it is the only element of ��
x�	�

	 Scaling � If w � � and � is convex
 then a subgradient of w� at x is given by
wg
 where g is any subgradient of � at x	

	 Sum� If �
x� � ��
x� � 
 
 
 � �m
x�
 where ��� 	 	 	 � �m are convex
 then any
g of the form g � g� � 
 
 
� gm is in ��
x�
 where gi � ��i
x�	

	 Maximum� Suppose that

�
x� � sup f��
x� j � � Ag �

where each �� is convex
 and A is any index set	 Suppose that �ach � A is
such that ��ach
x� � �
x� 
so that ��ach
x� achieves the maximum�	 Then if
g � ���ach
x�
 we have g � ��
x�	 Of course there may be several di�erent
indices that achieve the maximum� we need only pick one	

A special case is when � is the maximum of the functionals ��� 	 	 	 � �n
 so that
A � f�� 	 	 	 � ng	 If �
x� � �i
x�
 then any subgradient g of �i
x� is also a
subgradient of �
x�	

From these tools we can derive additional tools for determining a subgradient of
a weighted sum or weighted maximum of convex functionals	 Their use will become
clear in the next section	

For quasiconvex functionals
 we have the analogous tools�

	 Di�erentiable functional � If � is quasiconvex and di�erentiable at x
 with
nonzero derivative
 then its derivative at x is a quasigradient of � at x	

	 Scaling � If w � � and � is quasiconvex
 then any quasigradient of � at x is
also a quasigradient of w� at x	

	 Maximum� Suppose that

�
x� � sup f��
x� j � � Ag �

where each �� is quasiconvex
 and A is any index set	 Suppose that �ach � A
is such that ��ach
x� � �
x�	 Then if g is a quasigradient of ��ach at x
 then
g is a quasigradient of � at x	

	 Nested family � Suppose that � is de�ned in terms of a nested family of convex
sets
 i�e�
 �
x� � inf f� j x � C�g
 where C� � C� whenever � � 
 
see
section �	�	��	 If gT 
z�x� � � de�nes a supporting hyperplane to C��x� at x

then g is a quasigradient of � at x	


The sum tool is not applicable because the sum of quasiconvex functionals need
not be quasiconvex	�
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13.4 Computing Subgradients

In this section we show how to compute subgradients of several of the convex func�
tionals we have encountered in chapters ����� Since these are convex functionals
on H� an in�nite�dimensional space� the subgradients we derive will be linear func�
tionals on H� In the next section we show how these can be used to calculate
subgradients in Rn when a �nite�dimensional approximation used in chapter �� is
made	 the algorithms of the next chapter can then be used�

In general� the convex functionals we consider will be functionals of some par�
ticular entry 
or block of entries� of the closed�loop transfer matrix H� To simplify
notation� we will assume in each subsection that H consists of only the relevant
entry or entries�

13.4.1 An RMS Response

We consider the weighted H� norm�

�
H� �

�
�


�

Z �

��

Sw
��jH
j��j� d�
����

�

with SISO H for simplicity 
and of course� Sw
�� � ��� We will determine a
subgradient of � at the transfer function H�� If �
H�� � �� then the zero functional
is a subgradient� so we now assume that �
H�� �� �� In this case � is di�erentiable
at H�� so our �rst rule above tells us that our only choice for a subgradient is the
derivative of � at H�� which is the linear functional �sg given by

�sg
H� �
�


��
H��

Z �

��

Sw
���
�
H�
j��H
j��

�
d��


The reader can verify that for small H� �
H��H� � �
H����sg
H�	 the Cauchy�
Schwarz inequality can be used to directly verify that the subgradient inequal�
ity 
����� holds��

Using the subgradient for �� we can �nd a supporting hyperplane to the maxi�
mum RMS response speci�cation �
H� � ��

There is an analogous expression for the case when H is a transfer matrix� For
�
H� � kHk� and H� �� �� a subgradient of � at H� is given by

�sg
H� �
�


��
H��

Z �

��

�Tr 
H�
j��
�H
j��� d��

13.4.2 Step Response Overshoot

We consider the overshoot functional�

�
H� � sup
t��

s
t�� ��
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where s is the unit step response of the transfer function H� We will determine a
subgradient at H�� The unit step response of H� will be denoted s��

We will use the rule that involves a maximum of a family of convex functionals�
For each t � �� we de�ne a functional �step�t as follows� �step�t
H� � s
t�� The
functional �step�t evaluates the step response of its argument at the time t	 it is a
linear functional� since we can express it as

�step�t
H� �
�


�

Z �

��

ej�t

j�
H
j�� d��

Note that we can express the overshoot functional � as the maximum of the
a�ne functionals �step�t � ��

�
H� � sup
t��

�step�t
H�� ��

Now we apply our last rule� Let t� � � denote any time such that the overshoot
is achieved� that is� �
H�� � s�
t�� � �� There may be several instants at which
the overshoot is achieved	 t� can be any of them� 
We ignore the pathological case
where the overshoot is not achieved� but only approached as a limit� although it is
possible to determine a subgradient in this case as well��

Using our last rule� we �nd that any subgradient of the functional �step�t� � �
is a subgradient of � at H�� But the functional �step�t� � � is a�ne	 its derivative
is just �step�t� � Hence we have determined that the linear functional �step�t� is a
subgradient of � at H��

Let us verify the basic subgradient inequality 
������ It is

�
H� � �
H�� � �step�t�
H �H���

Using linearity of �step�t� and the fact that �
H�� � s�
t�� � � � �step�t�
H�� � ��
the subgradient inequality is

�
H� � s
t��� ��

Of course� this is obvious� it states that for any transfer function� the overshoot is
at least as large as the value of the unit step response at the particular time t��
minus ��

A subgradient of other functionals involving the maximum of a time domain
quantity� e�g�� maximum envelope violation 
see section ������� can be computed in
a similar way�

13.4.3 Quasigradient for Settling Time

Suppose that � is the settling�time functional� de�ned in section ������

�
H� � inffT j ���� � s
t� � ���� for t � Tg
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We now determine a quasigradient for � at the transfer function H�� Let T� �
�
H��� the settling time of H�� s�
T�� is either ���� or ����� Suppose �rst that
s�
T�� � ����� We now observe that any transfer function with unit step response
at time T� greater than or equal to ����� must have a settling time greater than or
equal to T�� in other words�

�
H� � T� whenever s
T�� � �����

Using the step response evaluation functionals introduced above� we can express
this observation as

�
H� � �
H�� whenever �step�T�
H �H�� � ��

But this shows that the nonzero linear functional �step�T� is a quasigradient for �
at H��

In general we have the quasigradient �qg for � at H�� where

�qg �

�
�step�T� if s�
T�� � �����

��step�T� if s�
T�� � �����

and T� � �
H���

13.4.4 Maximum Magnitude of a Transfer Function

We �rst consider the case of SISO H� Suppose that

�
H� � kHk� � sup
��R

jH
j��j�

provided H is stable 
see section 
��
����� 
We leave to the reader the modi�cation
necessary if � is a weighted H� norm�� We will determine a subgradient of � at
the stable transfer function H� �� ��

For each � � R� consider the functional that evaluates the magnitude of its
argument 
a transfer function� at the frequency j��

�mag��
H� � jH
j��j�
These functionals are convex� and we can express the maximum magnitude norm
as

�
H� � sup
��R

�mag��
H��

Thus we can use our maximum tool to �nd a subgradient�
Suppose that �� � R is any frequency such that jH�
j���j � �
H��� 
We

ignore the pathological case where the supremum is only approached as a limit� In
this case it is still possible to determine a subgradient�� Then any subgradient of
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�mag��� at H� is a subgradient of � at H�� But since H�
j��� �� �� this functional
is di�erentiable at H�� with derivative

�sg
H� �
�

�
H��
�
�
H�
j���H
j���

�
�

This linear functional is a subgradient of � at H�� The reader can directly verify
that the subgradient inequality 
����� holds�

13.4.5 H� Norm of a Transfer Matrix

Now suppose that H is an m� p transfer matrix� and � is the H� norm�

�
H� � kHk��

We will express � directly as the maximum of a set of linear functionals� as follows�
For each � � R� u � Cm� and v � Cp� we de�ne the linear functional

�u�v��
H� � � 
u�H
j��v� �

Then we have

�
H� � sup f�u�v��
H� j � � R� kuk � kvk � �g �

using the fact that for any matrix A � Cm�p�

�max
A� � sup f�
u�Av� j kuk � kvk � �g �

Now we can determine a subgradient of � at the transfer matrix H�� We pick
any frequency �� � R at which the H� norm of H� is achieved� i�e�

�max
H�
j���� � kH�k��


Again� we ignore the case where there is no such ��� commenting that for rational
H�� there always is such a frequency� if we allow �� � ��� We now compute a
singular value decomposition of H�
j����

H�
j��� � U�V ��

Let u� be the �rst column of U � and let v� be the �rst column of V � A subgradient
of � at H� is given by the linear functional

�sg � �u��v���� �
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13.4.6 Peak Gain

We consider the peak gain functional

�
H� � kHkpk gn �

Z �

�

jh
t�j dt�

In this case our functional is an integral of a family of convex functionals� We will
guess a subgradient of � at the transfer function H�� reasoning by analogy with
the sum rule above� and then verify that our guess is indeed a subgradient� The
technique of the next section shows an alternate method by which we could derive
a subgradient of the peak gain functional�

Let h� denote the impulse response ofH�� For each t � � we de�ne the functional
that gives the absolute value of the impulse response of the argument at time t�

�abs h�t
H� � jh
t�j�
These functionals are convex� and we can express � as

�
H� �

Z �

�

�abs h�t
H� dt�

If we think of this integral as a generalized sum� then from our sum rule we might
suspect that the linear functional

�sg
H� �

Z �

�

�sg�t
H� dt

is a subgradient for �� where for each t� �sg�t is a subgradient of �abs h�t at H��
Now� these functionals are di�erentiable for those t such that h�
t� �� �� and � is a
subgradient of �abs h�t at H� for those t such that h�
t� � �� Hence a speci�c choice
for our guess is

�sg
H� �

Z �

�

sgn
h�
t��h
t� dt�

We will verify that this is a subgradient of � at H��
For each t and any h we have jh
t�j � sgn
h�
t��h
t�	 hence

�
H� �

Z �

�

jh
t�jdt �
Z �

�

sgn
h�
t��h
t� dt�

This can be rewritten as

�
H� �
Z �

�


jh�
t�j� sgn
h�
t��
h
t� � h�
t��� dt � �
H�� � �sg
H �H���

This veri�es that �sg is a subgradient of � at H��



306 CHAPTER 13 ELEMENTS OF CONVEX ANALYSIS

13.4.7 A Worst Case Norm

We consider the particular worst case norm described in section ������

�
H� � kHkwc � sup fkHuk� j kuk� �Mampl� k �uk� �Mslewg �
We �rst rewrite � as

�
H� � sup

�Z �

�

v
t�h
t� dt

���� kvk� �Mampl� k �vk� �Mslew

�
� 
�����

Now for each signal v we de�ne the linear functional

�v
H� �

Z �

�

v
t�h
t� dt�

We can express the worst case norm as a maximum of a set of these linear func�
tionals�

�
H� � sup f�v
H� j kvk� �Mampl� k �vk� �Mslewg �
We proceed as follows to �nd a subgradient of � at the transfer matrix H�� Find

a signal v� such that

kv�k� �Mampl� k �v�k� �Mslew�

Z �

�

v�
t�h�
t� dt � �
H���


It can be shown that in this case there always is such a v�	 some methods for �nding
v� are described in the Notes and References for chapter ��� Then a subgradient of
� at H� is given by

�sg
H� � �v�
H��

The same procedure works for any worst case norm� �rst� �nd a worst case
input signal u� such that kH�kwc � kH�u�koutput� This task must usually be done
to evaluate kH�kwc anyway� Now �nd any subgradient of the convex functional
�u�
H� � kHu�koutput	 it will be a subgradient of k 	 kwc at H��

13.4.8 Subgradient for the Negative Dual Function

In this section we show how to �nd a subgradient for �� at �� where � is the dual
function introduced in section ����
 and discussed in section ���� Recall from 
���� of
section ��� that �� can be expressed as the maximum of a family of linear functions
of �	 we can therefore use the maximum tool to �nd a subgradient�

We start by �nding any Hach such that

�
�� � ����
Hach� � 	 	 	� �L�L
Hach��

Then a subgradient of �� at � is given by

g � �

�
�	
��
Hach�
���
�L
Hach�



�� �
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13.5 Subgradients on a Finite-Dimensional Subspace

In the previous section we determined subgradients for many of the convex func�
tionals we encountered in chapters ����� These subgradients are linear functionals
on the in�nite�dimensional space of transfer matrices	 most numerical computation
will be done on �nite�dimensional subspaces of transfer matrices 
as we will see in
chapter ���� In this section we show how the subgradients computed above can be
used to calculate subgradients on �nite�dimensional subspaces of transfer matrices�

Suppose that we have �xed transfer matrices H��H�� � � � �HN � and � is some
convex functional on transfer matrices� We consider the convex function 	 � RN 

R given by

	
x� � �
H� � x�H� � 	 	 	� xNHN ��

To determine some g � 
	
�x�� we �nd a subgradient of � at the transfer matrix
H� � �x�H� � 	 	 	� �xNHN � say� �sg� Then

g �

�
�	

�sg
H��
���

�sg
HN �



�� � 
	
�x��

Let us give a speci�c example using our standard plant of section 
��� Consider
the weighted peak tracking error functional of section �����
�

	pk trk
�� �� �



W �

�H
�a�
�� � �H

�b�
�� � 
�� �� ��H

�c�
�� � �

�



pk gn

�

where

W �
���

s� ���
�

H
�a�
�� �

�����s� � ���s� � ����s� ���

s� � 
�s� � ���s� � ���s� � ����s� � ����s� ���
�

H
�b�
�� �

�

�s� � 


s� � �����s� �
��

s� � 
���s� � 
��s� � ����s� � ���
s� � �����s� �
��
�

H
�c�
�� �

�����s� � 
���s� � ����s� 
���

s� � ����s� � �
�s� � 
���s� � �

�s� � ����s� 
���
�

	pk trk has the form

	pk trk
�� �� � kH� � �H� � �H�kpk gn �

where

H� � W
�
H�c� � �

�
�

H� � W
�
H�a� �H�c�

�
�

H� � W
�
H�b� �H�c�

�
�
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The level curves of 	pk trk are shown in �gure ����� A subgradient g � 
	pk trk
�� ��
is given by

g �

�
�sg
H��
�sg
H��

�
�

�
���	

Z �

�

sgn
h
t��h�
t� dt

Z �

�

sgn
h
t��h�
t� dt



���� �

where h is the impulse response of H� � �H� � �H�� h� is the impulse response of
H�� and h� is the impulse response of H� 
see section ��������

Consider the point � � �� � � �� where 	pk trk
�� �� � ������ A subgradient at
this point is

g �

�
�����

������
�
� 
�����

In �gure ���� the level curve 	pk trk
�� �� � ����� is shown� together with the
subgradient 
����� at the point �� ��T � As expected� the subgradient determines a
half�space that contains the convex set�

�� ��T
�� 	pk trk
�� �� � 	pk trk
�� �� � �����

�
�

�

�

q�
x

�����

g

�� ���� � ��� � ��� �
��

����

�

���

�

���

�

Figure ���� The level curve �pk trk��� �� � ����� is shown� together with
the subgradient ���	
� at the point �� ��T 	
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Notes and References

Convex Analysis
Rockafellar
s book �Roc��� covers convex analysis in detail	 Other texts covering this
material are Stoer and Witzgall �SW���� Barbu and Precupanu �BP���� Aubin and Vin�
ter �AV���� and Demyanov and Vasilev �DV���	 The last three consider the in�nite�
dimensional �Banach space� case� carefully distinguishing between the many important dif�
ferent types of continuity� compactness� and so on� which we have not considered	 Daniel
s
book �Dan��� also gives the precise in�nite�dimensional formulation	

General nonsmooth analysis �which includes convex analysis� is covered in Clarke �Cla����
which gives the precise formulation of the concepts of this chapter in in�nite�dimensional
�Banach� spaces	 Chapter � of Clarke
s book contains a complete calculus for subgradients
and quasigradients� including the subgradient computation tools of section ��	� �and a lot
more�	

Subgradients of Closed-Loop Convex Functionals
Subgradients of an H� norm are given in Polak and Wardi �PW���� several of the
other subgradients are derived in Polak and Salcudean �PS��� and Salcudean
s Ph	D	
thesis �Sal���	
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Chapter 14

Special Algorithms for Convex
Optimization

We describe several simple but powerful algorithms that are speci�cally designed
for convex optimization	 These algorithms require only the ability to compute
the function value and any subgradient for each relevant function	 A key feature
of these algorithms is that they maintain converging upper and lower bounds on
the quantity being computed� and thus can compute the quantity to a guaranteed
accuracy� We demonstrate each on the two�parameter example of chapter ��� in
chapter �� they are applied to more substantial problems	

In this chapter we concentrate on the �nite�dimensional case	 these methods are
extended to the in�nite�dimensional case in the next chapter�

14.1 Notation and Problem Definitions

We will consider several speci�c forms of optimization problems�
The unconstrained problem is to compute the minimum value of ��

��
	
� min�
z�� 
�����

and in addition to compute a minimizer x�� which satis�es �
x�� � ��� We will use
the notation

x� � argmin�
z�

to mean that x� is some minimizer of ��
The constrained optimization problem is to compute the minimum value of ��

subject to the constraints ��
z� � �� � � � � �m
z� � �� i�e��

�� � min
���z����


��m�z���

�
z��

311
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and in addition to compute a minimizer x� that satis�es �
x�� � ��� ��
x
�� � ��

� � � � �m
x�� � �� To simplify notation we de�ne the constraint function

�
z� � max
��i�m

�i
z��

so we can express the constraints as �
z� � ��

�� � min
��z���

�
z�� 
���
�

We will say that z is feasible if �
z� � ��
The feasibility problem is�

�nd x such that �
x� � �� or determine that there is no such x� 
�����

Algorithms that are designed for one form of the convex optimization problem
can often be modi�ed or adapted for others	 we will see several examples of this�
It is also possible to modify the algorithms we present to directly solve other prob�
lems that we do not consider� e�g�� to �nd Pareto optimal points or to do goal
programming�

Throughout this chapter� unless otherwise stated� � and ��� � � � � �m are convex
functions from R

n into R� The constraint function � is then also convex�

14.2 On Algorithms for Convex Optimization

Many algorithms for convex optimization have been devised� and we could not hope
to survey them here� Instead� we give a more detailed description of two types of
algorithms that are speci�cally designed for convex problems� cutting�plane and
ellipsoid algorithms�

Let us brie�y mention another large family of algorithms� the descent meth�
ods� contrasting them with the algorithms that we will describe� In these methods�
successive iterations produce points that have decreasing objective values� General�
purpose descent methods have been successfully applied to� and adapted for� non�
di�erentiable convex optimization	 see the Notes and References at the end of this
chapter� The cutting�plane and ellipsoid algorithms are not descent methods	 ob�
jective values often increase after an iteration�

Possible advantages and disadvantages of some of the descent methods over
cutting�plane and ellipsoid methods are�

� The cutting�plane and ellipsoid algorithms require only the evaluation of func�
tion values and any one 
of possibly many� subgradients of functions� Most

but not all� descent methods require the computation of a descent direction
or even steepest descent direction for the function at a point	 this can be
a di�cult task in itself� and is always at least as di�cult as computing a
subgradient�
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� Many 
but not all� descent methods for convex optimization retain the heuris�
tic stopping criteria used when they are applied to general 
nonconvex� opti�
mization problems� In contrast we will see that the cutting�plane and ellipsoid
methods have simple stopping criteria that guarantee the optimum has been
found to a known accuracy�

� Most descent methods for nondi�erentiable optimization are substantially
more complicated than the cutting�plane and ellipsoid algorithms� These
methods often include parameters that need to be adjusted for the partic�
ular problem�

� For smooth problems� many of the descent methods o�er substantially faster
convergence� e�g�� quadratic�

Let us immediately qualify the foregoing remarks� Many descent methods have
worked very well in practice� one famous example is the simplex method for linear
programming� In addition� it is neither possible nor pro�table to draw a sharp
line between descent methods and non�descent methods� For example� the ellipsoid
algorithm can be interpreted as a type of variable�metric descent algorithm� We
refer the reader to the references at the end of this chapter�

14.3 Cutting-Plane Algorithms

14.3.1 Computing a Lower Bound on ��

We consider the unconstrained problem 
������ Suppose we have computed function
values and at least one subgradient at x�� � � � � xk�

�
x��� � � � � �
xk�� g� � 
�
x��� � � � � gk � 
�
xk�� 
�����

Each of these function values and subgradients yields an a�ne lower bound on ��

�
z� � �
xi� � gTi 
z � xi� for all z� � � i � k�

and hence

�
z� � �lbk 
z�
	
� max

��i�k

�
�
xi� � gTi 
z � xi�

�
� 
�����

�lbk is a piecewise linear convex function that is everywhere less than or equal to ��
Moreover� this global lower bound function is tight at the points x�� � � � � xk� since
�
xi� � �lbk 
xi� for � � i � k� In fact� �lbk is the smallest convex function that
has the function values and subgradients given in 
������ An example is shown in
�gure �����

It follows that

�� � Lk
	
� min

z
�lbk 
z�� 
�����
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x� x�x� x��

��R
��x�

���
�lb�

���
slope g�

��I
slope g����

slope g�

��� ��

HHY
L�

Figure ���� The maximum of the a�ne support functionals at x�� x�� and
x� gives the global lower bound function �lb� � which is tight at the points
x�� x�� and x�	 L�� the minimum of �lb� � which occurs at x��� is found by
solving ���	��	 L� is a lower bound on ��	

The minimization problem on the right�hand side is readily solved via linear pro�
gramming� We can express 
����� as

Lk � min
L� z

��xi� � gT
i
�z � xi� � L� � � i � k

L�

which has the form of a linear program in the variable w�

Lk � min
Aw � b

cTw 
�����

where

w �

�
z
L

�
� c �

�
�
�

�
� A �

�
�	
gT� ��
���

���
gTk ��



�� � b �

�
�	

gT� x� � �
x��
���

gTk xk � �
xk�



�� � 
�����

In fact� this linear program determines not only Lk� but also a minimizer of �lbk �
which we denote x�k 
shown in �gure ���� as well��

The idea behind 
����� is elementary� but it is very important� It shows that
by knowing only a �nite number of function values and subgradients of a convex
function� we can deduce a lower bound on the minimum of the function� No such
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property holds for general nonconvex functions� This property will be useful in de�
signing stopping criteria for optimization algorithms that can guarantee a maximum
error�

The function �lbk can be unbounded below� so that Lk � �� 
e�g� when k �
� and g� �� ��� which is not a useful bound� This can be avoided by explicitly
specifying bounds on the variables� so that we consider

�� � min
zmin�z�zmax

�
z��

In this case we have the lower bound

Lk � min
zmin�z�zmax

�lbk 
z�

which can be computed by adding the bound inequalities zmin � z � zmax to the
linear program 
������

Finally we mention that having computed � at the points x�� � � � � xk we have
the simple upper bound on ���

Uk
	
� min

��i�k
�
xi�� 
�����

which is the lowest objective value so far encountered� If an objective value and a
subgradient are evaluated at another point xk��� the new lower and upper bounds
Lk�� and Uk�� are improved�

Lk � Lk�� � �� � Uk�� � Uk�

14.3.2 Kelley’s Cutting-Plane Algorithm

Kelley�s cutting�plane algorithm is a natural extension of the lower bound compu�
tation of the previous section� It is simply�

x�� zmin� zmax � any initial box that contains minimizers�
k � ��
repeat f

k � k � ��
compute �
xk� and any gk � 
�
xk��
solve ������ to �nd x�k and Lk�
compute Uk using ����	��
xk�� � x�k�

g until 
 Uk � Lk � � ��

An example of the second iteration of the cutting�plane algorithm is shown in
�gure ���
� The idea behind Kelley�s algorithm is that at each iteration the lower
bound function �lbk is re�ned or improved 
i�e�� made larger� so that �lbk�� � �lbk ��
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x� x�x��

��R
��x�

���
�lb�

���
slope g�

��I
slope g�

� ��

� L�

Figure ���� In the second iteration of the cutting�plane algorithm a sub�
gradient g� at x� is found� giving the global lower bound function �lb� 	 ���	��
is solved to give L� and x� � x��	 �The next iteration of the cutting�plane
algorithm is shown in �gure ��	�	�

since one more term is added to the maximum in 
������ Moreover� since �lbk is tight
at x�� � � � � xk� it is a good approximation to � near x�� � � � � xk� In the next section�
we will use this idea to show that the cutting�plane algorithm always terminates�

The cutting�plane algorithm maintains upper and lower bounds on the quantity
being computed�

Lk � �� � Uk�

which moreover converge as the algorithm proceeds�

Uk � Lk 
 � as k 
 ��

Thus we compute �� to a guaranteed accuracy of �� on exit� we have a point with
a low function value� and in addition we have a proof that there are no points with
function value more than � better than that of our point� Stopping criteria for
general optimization algorithms 
e�g�� descent methods� are often more heuristic�
they cannot guarantee that on exit� �� has been computed to a given accuracy�

Provided �� �� �� it is also possible to specify a maximum relative error 
as
opposed to absolute error�� with the modi�ed stopping criterion

until 
 Uk � Lk � �min fjLkj� jUkjg ��

which guarantees a relative accuracy of at least � on exit� These stopping criteria can
o�er a great advantage when the accuracy required is relatively low� for example�
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���� This relative accuracy can be achieved long before the objective values or
iterates xk appear to be converging	 still� we can con�dently halt the algorithm�

A valid criticism of the cutting�plane algorithm is that the number of constraints
in the linear program 
����� that must be solved at each iteration grows with the to�
tal number of elapsed iterations� In practice� if these linear programs are initialized
at the previous point� they can be solved very rapidly� e�g�� in a few simplex itera�
tions� Some cutting�plane algorithms developed since Kelley�s drop constraints� so
the size of the linear programs to be solved does not grow as the algorithm proceeds	
see the Notes and References at end of this chapter�

While the cutting�plane algorithm makes use of all of the information 
�
xi�� gi�
i � �� � � � � k� that we have obtained about � in previous iterations� the ellipsoid
methods that we will describe later in this chapter maintain a data structure of
constant size 
at the cost of an approximation� that describes what we have learned
about the function in past iterations�

14.3.3 Proof of Convergence

We noted above that when the cutting�plane algorithm terminates� we know that
the optimum objective �� lies between the bounds L and U � which di�er by less
than �� In this section we show that the cutting�plane algorithm does in fact always
terminate�

Let Binit denote the initial box� and

G � sup
g � ���z�

z � Binit

kgk�


G can be shown to be �nite�� Suppose that for k � �� � � � �K the algorithm has not
terminated� i�e� Uk � Lk 
 � for k � �� � � � �K� Since

Lk � �lbk 
xk��� � max
j�k

�
�
xj� � gTj 
xk�� � xj�

�

we have

Lk � �
xj� � gTj 
xk�� � xj�� � � j � k � K�

and hence using �
xj� � Uk and the Cauchy�Schwarz inequality

Lk � Uk �Gkxk�� � xjk� � � j � k � K�

From this and Uk � Lk 
 � for k � K we conclude that

kxi � xjk 
 �

G
i� j � K� i �� j� 
������

in other words� the minimum distance between any two of the points x�� � � � � xk
exceeds ��G�
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A volume argument can now be used to show that K cannot be too large�
Around each xi we place a ball Bi of diameter ��G� By 
������� these balls do not
intersect� so their total volume is K times the volume of one ball� These balls are
all contained in a box B which is the original box Binit enlarged in every dimension
by ��
G� Hence the total volume of the balls must be less than the volume of B�
We conclude that K is no larger than the volume of B divided by the volume of
one of the balls�

If we take Kmax � vol
B��vol
B��� then within Kmax iterations� the cutting�
plane algorithm terminates� 
We comment that this upper bound is a very poor
bound� vastly greater than the typical number of iterations required��

14.3.4 Cutting-Plane Algorithm with Constraints

The cutting�plane algorithm of the previous section can be modi�ed in many ways
to handle the constrained optimization problem 
���
�� We will show one simple
method� which uses the same basic idea of forming a piecewise linear lower bound
approximation of a convex function based on the function values and subgradients
already evaluated�

Suppose we have computed function values and at least one subgradient at
x�� � � � � xk for both the objective and the constraint function�

�
x��� � � � � �
xk�� g� � 
�
x��� � � � � gk � 
�
xk��

�
x��� � � � � �
xk�� h� � 
�
x��� � � � � hk � 
�
xk��

These points xi need not be feasible�
We form piecewise linear lower bound functions for both the objective and the

constraint� �lbk in 
����� and

�lb
k 
z�

	
� max

��i�k

�
�
xi� � hTi 
z � xi�

�
� 
������

which satis�es �lb
k 
z� � �
z� for all z � Rn�

The lower bound function �lb
k yields a polyhedral outer approximation to the

feasible set�

fz j �
z� � �g 
 �
z
�� �lb

k 
z� � �
�
� 
����
�

Thus we have the following lower bound on ���

�� � Lk
	
� min

�
�lbk 
z�

�� �lb
k 
z� � �

�
� 
������

As in section ������� the optimization problem 
������ is equivalent to a linear
program�

Lk � min
Aw � b

cTw 
������
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where

w �

�
z
L

�
� c �

�
�
�

�
� A �

�
���������	

g
T
� ��
���

���

g
T
k ��
h
T
� �
���

���

h
T
k �



����������
� b �

�
���������	

g
T
� x� � �
x��

���

g
T
k xk � �
xk�

h
T
� x� � �
x��

���

h
T
k xk � �
xk�



����������
�

We note again that the lower bound Lk in 
������ can be computed no matter how
the points and subgradients were chosen�

The modi�ed cutting�plane algorithm is exactly the same as the cutting�plane
algorithm� except that the linear program 
������ is solved instead of 
������ and
the stopping criterion must be modi�ed for reasons that we now consider�

If the feasible set is empty then eventually the linear program 
������ will be�
come infeasible� When this occurs� the cutting�plane algorithm terminates with the
conclusion that the feasible set is empty� On the other hand� if the feasible set is not
empty� and the optimum occurs on the boundary of the feasible set� which is often
the case� then the iterates xk are generally infeasible� since they lie in the outer
approximation of the feasible set given by the right�hand side of 
����
�� However�
they approach feasibility 
and optimality�� it can be shown that

lim
k��

�
xk� � ��� lim sup
k��

�
xk� � ��

The second inequality means that given any �feas 
 � we eventually have �
xk� �
�feas�

This has an important consequence for the upper bound and stopping criterion
described in section �����
� If xk is not feasible� then �
xk� is not an upper bound
on ��� Therefore we cannot use 
����� to compute an upper bound on ��� A good
stopping criterion for the modi�ed cutting�plane algorithm is�

until 
 �
xk� � �feas and �
xk�� Lk � �obj ��

We interpret �feas as a feasibility tolerance and �obj as an objective tolerance�
When the algorithm successfully terminates we are guaranteed to have found a
point that is feasible and has objective value within �obj of optimal for the �feas�
relaxed problem

minf�
z� j �
z� � �feasg�

but probably not feasible for the problem 
���
���

Other modi�cations of the cutting�plane algorithm generate only feasible iter�
ates	 see the Notes and References at the end of this chapter�
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14.3.5 Example

In this example we will use the cutting�plane algorithm to minimize a convex func�
tion on R

�� We will use the standard example plant that we introduced in sec�
tion 
���

The function to be minimized is

�

��
�
�

��
� 	wt max
�� ���

where the function

	wt max
�� �� � max f	pk trk
�� ��� ���	max sens
�� ��� ��	rms yp
�� ��g
was de�ned in section ����� The level curves of 	wt max are plotted in �gure ���
��
The minimum value of 	wt max is ������ which occurs at x� � ����� �����T �

The bounding box for the cutting�plane algorithm was zmin � ����� �����T and
zmax � ���� ����T � This was an aesthetic choice	 in a real problem the bounding
box would be much larger� The starting point� x� � ���� ����T � is the center of the
bounding box� The upper and lower bounds versus iteration number are shown in
�gure ����� The maximum relative error� i�e�� 
Uk�Lk��Lk� is shown in �gure �����
Level curves of �lbk are shown for k � �� 
� �� � in �gures ����� ����� ����� and �����
The reader is encouraged to trace the execution of the algorithm through these
�gures� and compare the level curves of �lbk with those of 	wt max in �gure ���
��

�

iteration� k

���
Uk

��I
Lk

���
��

� � � � � 	 
 � �
���

���

��	

��


���

���

�

Figure ���� Upper and lower bounds on the solution ��� as a function of
the iteration number k� are shown for the cutting�plane algorithm	
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U
k
�
L
k
��
L
k

iteration� k

� � � 	 
 � �
����

����

����

����

Figure ���� For the cutting�plane algorithm the maximum relative error�
de�ned as �Uk � Lk��Lk� falls below �	��� by iteration �	

�

�

��

�

�

�

�

�

�x�

�
x�

�
x�

�� ���� � ��� � ��� �
��

����

�

���

�

���

�

Figure ���� The cutting�plane algorithm is started at the point x� �
���� ����T 	 The subgradient g� at x� gives an a�ne global lower bound
�lb� for �	 The level curves of �lb� are shown� together with the solution x�
to ���	��	 This point gives the lower bound L� � �����	 �The dashed line
shows the bounding box� and x� is the minimizer of �wt max	�
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Figure ���� The level curves of �lb� are shown� together with the solution
x� to ���	��	 This point gives the lower bound L� � ����
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Figure ���� The level curves of �lb� are shown� together with the solution
x� to ���	��	 This point gives the lower bound L� � ��
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Figure ���� The level curves of �lb� are shown� together with the solution
x� to ���	��	 This point gives the lower bound L� � �����	
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14.4 Ellipsoid Algorithms

14.4.1 Basic Ellipsoid Algorithm

We �rst consider the unconstrained minimization problem 
������ The ellipsoid al�
gorithm generates a  decreasing! sequence of ellipsoids in Rn that are guaranteed
to contain a minimizing point� using the idea that given a subgradient 
or quasigra�
dient� at a point� we can �nd a half�space containing the point that is guaranteed
not to contain any minimizers of � 
see �gure ���
��

Suppose that we have an ellipsoid Ek that is guaranteed to contain a minimizer
of �� In the basic ellipsoid algorithm� we compute a subgradient gk of � at the
center� xk� of Ek� We then know that the  sliced! half ellipsoid

Ek �
�
z
�� gTk 
z � xk� � �

�

contains a minimizer of �� as shown in �gure �����

��I
Ek

gk

q�xk

Figure ���	 At the kth iteration of the ellipsoid algorithm a minimizer
of � is known to lie in the ellipsoid Ek centered at xk	 The subgradient gk
at xk determines a half�space �below and to the left of the dashed line� in
which ��x� is at least ��xk�	 Therefore a minimizer of � lies in the shaded
region	

We compute the ellipsoid Ek�� of minimum volume that contains the sliced
half ellipsoid	 Ek�� is then guaranteed to contain a minimizer of �� as shown in
�gure ������ The process is then repeated�

We now describe the algorithm more explicitly� An ellipsoid E can be described
as

E �
�
z
�� 
z � a�TA��
z � a� � �

�
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��I
Ek

gk

q�xk

��R
Ek��

q�xk��

Figure ����
 The shaded region in �gure ��	� is enclosed by the ellipsoid of
smallest volume� denoted Ek��� and centered at xk��	 Any subgradient gk��

at xk�� is found and the next iteration of the ellipsoid algorithm follows	 In
R� the area of Ek�� is always ��� of the area of Ek	

where A � AT 
 �� a is the center of the ellipsoid E and the matrix A gives the
 size! and orientation of E� the square roots of the eigenvalues of A are the lengths
of the semi�axes of E� The volume of E is given by

vol
E� � �n
p
detA�

where �n is the volume of the unit sphere in Rn	 in fact�

�n �
�n��

"
n�
 � ��
�

but we will not need this result�
The minimum volume ellipsoid that contains the half ellipsoid

�
z
�� 
z � a�TA��
z � a� � �� gT 
z � a� � �

�
is given by

�E �
n
z
��� 
z � �a�T �A��
z � �a� � �

o
�

where

�a � a� A�g

n� �
� 
������

�A �
n�

n� � �

�
A� 


n� �
A�g�gTA

�
� 
������
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and

�g � g
�p

gTAg

is a normalized subgradient� 
Note that the sliced ellipsoid depends only on the
direction of g� and not its length��

Thus� the basic ellipsoid algorithm is�

x�� A� � any initial ellipsoid that contains minimizers�
k � ��
repeat f

k � k � ��
evaluate �
xk� and compute any gk � 
�
xk��

�g � gk

�q
gTk Akgk �

xk�� � xk �Ak�g�
n� ���

Ak�� � n�

n���

�
Ak � �

n��Ak�g�g
TAk

�
�

g until 
 stopping criterion ��

From 
������� we can think of Ek�� as slightly thinner than Ek in the direction
gk� and slightly enlarged over all� Even though Ek�� can be larger than Ek in the
sense of maximum semi�axis 
�max
Ak��� 
 �max
Ak� is possible�� it turns out that
its volume is less�

vol
Ek��� �

�
n

n� �

��n������
n

n� �

��n�����

vol
Ek� 
������

� e�
�

�n vol
Ek�� 
������

by a factor that only depends on the dimension n� We will use this fact in the next
section to show that the ellipsoid algorithm converges� i�e��

lim
k��

�
xk� � ���

provided our original ellipsoid E� 
which is often a large ball� i�e� x� � �� A� � R�I�
contains a minimizing point in its interior�

Since we always know that there is a minimizer z� � Ek� we have

�� � �
z�� � �
xk� � gTk 
z
� � xk�

for some z� � Ek� and hence

�
xk�� �� � �gTk 
z� � xk�

� max
z�Ek

�gTk 
z � xk�

�
q
gTk Akgk�

Thus the simple stopping criterion
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until
� q

gTk Akgk � �
�
�

guarantees that on exit� �
xk� is within � of ��� A more sophisticated stopping
criterion is

until 
 Uk � Lk � � ��

where

Uk � min
��i�k

�
xi�� Lk � max
��i�k

�
�
xi��

q
gTi Aigi

�
� 
������

While the ellipsoid algorithm works for quasiconvex functions 
with the gk�s
quasigradients�� this stopping criterion does not�

14.4.2 Proof of Convergence

In this section we show that the ellipsoid algorithm converges� We suppose that
z� � E� and that for k � �� � � � �K� �
xk� 
 �� � �� where � 
 �� Then every point
z excluded in iterations �� � � � �K has �
z� 
 ��� �� since at iteration k the function
values in each excluded half�space exceed �
xk�� If

G � max
g � ���x�

x � E�

kgk

is the maximum length of the subgradients over the initial ellipsoid� then we �nd
that in the ball

B � fz j kz � z�k � ��Gg
we have �
z� � �� � � 
we assume without loss of generality that B 
 E��� and
consequently no point of B was excluded in iterations �� � � � �K� so that in fact

B 
 Ek�

Thus� vol
Ek� � vol
B�� so using 
�������������

e�
K

�n vol
E�� � 
��G�n�n�

For E� � fz j kzk � Rg we have vol
E�� � Rn�n� so� taking logs�

�K


n
� n logR � n log

�

G
�

and therefore

K � 
n� log
RG

�
�

Thus to compute �� with error at most �� it takes no more than 
n� logRG��
iterations of the ellipsoid algorithm	 this number grows slowly with both dimension
n and accuracy �� We will return to this important point in section �����
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14.4.3 Ellipsoid Algorithm with Constraints

The basic ellipsoid algorithm is readily modi�ed to solve the constrained prob�
lem 
���
�� In this section we describe one such modi�cation�

Once again� we generate a sequence of ellipsoids of decreasing volume� each of
which is guaranteed to contain a feasible minimizer� If xk is feasible 
�
xk� � ��
then we form Ek�� exactly as in the basic ellipsoid algorithm	 we call this an
objective iteration� If xk is infeasible 
�
xk� 
 �� then we form Ek�� as in the
basic ellipsoid algorithm� but using a subgradient of the constraint instead of the
objective� We call this a constraint iteration�

The algorithm is thus�

x�� A� � an ellipsoid that contains feasible minimizers �if there are any��
k � ��
repeat f

k � k � ��
compute �
xk��
if 
 �
xk� 
 � � f


� xk is infeasible �

compute any hk � 
�
xk��

�g � hk

�q
hTkAkhk �

if
�
�
xk��

q
hTkAkhk 
 �

�
f

quit because the feasible set is empty�
g

g else f

� xk is feasible �

compute �
xk� and any gk � 
�
xk��

�g � gk

�q
gTk Akgk �

g
xk�� � xk �Ak�g�
n� ���

Ak�� � n�

n���

�
Ak � �

n��Ak�g�g
TAk

�
�

g until
�
�
xk� � � and

q
gTk Akgk � �

�
�

In a constraint iteration� the points we discard are all infeasible� In an objective
iteration� the points we discard all have objective value greater than or equal to the
current� feasible point� Thus in each case� we do not discard any minimizers� so that
the ellipsoids will always contain any minimizers that are in the initial ellipsoid�

The same proof as for the basic ellipsoid algorithm shows that this modi�ed
algorithm works provided the set of points that are feasible and have nearly op�
timal objective value has positive volume� More sophisticated variations work in
other cases 
e�g�� equality constraints�� Alternatively� if we allow slightly violated
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constraints� we can use the stopping criterion

until
�
�
xk� � �feas and

q
gTk Akgk � �obj

�
�

With this stopping criterion� the modi�ed algorithm will work even when the set of
feasible points with nearly optimal objective value does not have positive volume�
e�g�� with equality constraints� In this case the modi�ed algorithm produces nearly
optimal points for the ��relaxed problem� just as in the modi�ed cutting�plane
algorithm�

14.4.4 Deep-Cut Ellipsoid Algorithm for Inequality Specifications

A simple variation of the ellipsoid algorithm can be used to solve the feasibility
problem 
������ This modi�ed algorithm often performs better than the ellipsoid
algorithm applied to the constraint function ��

The idea is based on �gure ����� suppose we are given an x that is not feasible�
so that �
x� 
 �� Given h � 
�
x�� we have for all z

�
z� � �
x� � hT 
z � x�

so for every feasible point zfeas we have

hT 
zfeas � x� � ��
x��
We can therefore exclude from consideration the half�space�

z
�� hT 
z � x� 
 ��
x��

which is bigger 
�
x� 
 �� than the half�space fz j hT 
z� x� 
 �g excluded in the
ellipsoid algorithm� as shown in �gure ������

In the modi�ed ellipsoid algorithm� we maintain ellipsoids guaranteed to contain
a feasible point 
if there is one�� as shown in �gures ����� and ����
� If xk is not
feasible 
�
xk� 
 ��� we let Ek�� be the minimum volume ellipsoid that contains
the set

Sk � Ek �
�
z
�� hTk 
z � xk� � ��
xk�

�
�

If Sk � �� we know that there are no feasible points� This happens if and only ifq
hTkAkhk � �
xk��

Otherwise� Ek�� is given by

xk�� � xk � � � n�

n� �
Ak

�hk 
���
��

Ak�� �
n�

n� � �

�� ���

�
Ak � 

� � n��


n� ��
� � ��
Ak

�hk�h
T
kAk

�
� 
���
��
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��I
Ek

hk

q�xk

��xk�
khkk

Figure ����� At the kth iteration of the deep�cut ellipsoid algorithm any
feasible point must lie in the ellipsoid Ek centered at xk	 If xk is infeasible
�meaning ��xk� � �� any subgradient hk of � at xk determines a half�space
�below and to the left of the dotted line� in which ��x� is known to be
positive	 Thus any feasible point is now known to lie in the shaded region	

��I
Ek

hk

q�xk

��xk�
khkk

��R
Ek��

q�xk��

Figure ����� The shaded region in �gure ��	�� is enclosed by the ellipsoid
of smallest volume� denoted Ek��� and centered at xk��	 If the point xk��

is feasible the algorithm terminates	 Otherwise� any subgradient hk�� of �
at xk�� is found	 The algorithm then proceeds as shown in �gure ��	��	
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where

� �
�
xk�q
hTkAkhk

�

�hk �
hkq

hTkAkhk

�

In forming Ek��� we cut out more of the ellipsoid Ek than in the basic ellipsoid
method� so this algorithm is called a deep�cut ellipsoid method� The deep�cut
ellipsoid algorithm is thus�

x�� A� � any ellipsoid that contains feasible points �if there are any��
k � ��
repeat f

compute �
xk� and any hk � 
�
xk��
if 
 �
xk� � � � f

done� xk is feasible�
g
if
�
�
xk� 


q
hTkAkhk

�
f

quit� the feasible set is empty�
g
�� �
xk�

�q
hTkAkhk �

�hk � hk

�q
hTkAkhk �

xk�� � xk � ��n�
n�� Ak

�hk�

Ak�� � n�

n��� 
�� ���
�
Ak � ����n��

�n��������Ak
�hk�h

T
kAk

�
�

k � k � ��
g

Deep�cuts can be used for the constraint iterations in the modi�ed ellipsoid
algorithm for the constrained problem	 they can also be used for the objective
iterations in the ellipsoid algorithm for the unconstrained or constrained problems�
as follows� At iteration k� it is known that the optimum function value does not
exceed Uk� so we can cut out the half�space in which the function must exceed Uk�
which is often larger 
if Uk � �
xk�� than the half�space in which the function must
exceed �
xk��

14.4.5 Example

We use the same function� 	wt max� that we used in the cutting�plane example in
section ������� The algorithm was started with E� set to a circle of radius ��

about x� � ���� ����T � Ellipsoid volume is shown in �gure ������ Upper and lower
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bounds versus iteration number are shown in �gure ������ The worst case relative
error is shown in �gure ������ The ellipsoid Ek is shown at various iterations in
�gure ������

�
p d
et
A
k

iteration� k

� �� �� �� �� �� 	�
�

�

�

�

�

�

	




�

Figure ����� The volume of the ellipsoid Ek decreases exponentially with
the iteration number k	

For the deep�cut algorithm we consider the inequality speci�cations

	pk trk
�� �� � ���� 	max sens
�� �� � ��� 	rms yp
�� �� � �����

using the constraint function

�

��
�
�

��
	
� max

�
	pk trk
�� ��� ����

����
�
	max sens
�� ��� ���

���
�

	rms yp
�� ��� ����

����

�
� 
���

�

The deep�cut ellipsoid algorithm �nds a feasible point in � iterations� The execution
of the algorithm is traced in table ���� and �gure ������ Figure ����� also shows
the set of feasible points� which coincides with the set where 	wt max
�� �� � �����

14.5 Example: LQG Weight Selection via Duality

In this section we demonstrate some of the methods described in this chapter on
the problem of weight selection for an LQG controller design� We consider the
multicriterion LQG problem formulated in section �
�
��� and will use the notation
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�

iteration� k

���
Uk

��I
Lk

���
��

� �� �� �� �� �� 	�
��	

��	�

��	�

��		

��	�

��


��
�

��
�

��
	

��
�

���

Figure ����� Upper and lower bounds on the solution ��� as a function
of the iteration number k� for the ellipsoid algorithm	


U
k
�
L
k
��
L
k

iteration� k

� �� �� �� �� �� 	�
����

����

����

����

Figure ����� For the ellipsoid algorithm the maximum relative error� de�
�ned as �Uk � Lk��Lk� falls below �	��� by iteration ��	
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�

�

E�

E�

E��

E���x
�

�� ���� � ��� � ��� �
��

����

�

���

�

���

�

Figure ����� The initial ellipsoid� E�� is a circle of radius �	� centered at
���� ����T 	 The ellipsoids at the �th� ��th� and ��nd iterations are shown�
together with the optimum x�	

�

�

�x�

�x�

�x�
�x�

E�

E�

E�

E�

�� ���� � ��� � ��� �
��

����

�

���

�

���

�

Figure ����� The initial ellipsoid� E� is a circle of radius �	� centered at
x� � ���� ����T 	 After eight iterations of the deep�cut ellipsoid algorithm
a feasible point x� is found for the constraint function ���	���	 The set of
feasible points for these speci�cations is shaded	 Note that each ellipsoid
contains the entire feasible set	 See also table ��	�	
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k xk �
xk�
�pk trk

� ����#
�max sens

� ���#
�rms yp

� ����#
action

�
�����
�����

����

�����
yes


����
no

�����

yes

cut �max sens



���
�

���
�� �����
�����
no

�����
no

������
no

cut �max sens

�
������
�����

�����
����

yes

�����
yes

����
�
no

cut �rms yp

�
�����
��
��

�����
�����
yes


����
no

����


yes

cut �max sens

�
�����
���
�

�����
�����
yes

�����
no

������
yes

cut �max sens

�
����
�
�����

�����
����

yes

�����
yes

����


no

cut �rms yp

�
��
��
���



�����
�����
yes

�����
no

������
yes

cut �max sens

�
��
��
�����

������ �����
yes

�����
yes

������
yes

done

Table ���� The steps performed by the deep�cut ellipsoid algorithm for
the constraint function ���	���	 At each iteration a deep�cut was done using
the function that had the largest normalized constraint violation	 See also
�gure ��	��	

de�ned there� The speci�cations are realizability and limits on the RMS values of
the components of z� i�e��

RMS
z�� � pa�� � � � �RMS
zL� � paL� 
���
��


with the particular power spectral density matrix for w described in section �
�
����
Each zi is either an actuator signal or some linear combination of the system state�

A will denote the set of a � RL
� that corresponds to achievable speci�cations of the

form 
���
���
We will describe an algorithm that solves the feasibility problem for this family

of speci�cations� i�e�� determines whether or not a � A� and if so� �nds a controller
that achieves the given speci�cations� This problem can usually be solved by a
skilled designer using ad hoc weight adjustment and LQG design 
see section ����
��
but we will describe an organized algorithm that cannot fail�

By the convex duality principle 
see section ���	 the technical condition holds in
this case�� we know that

a � A �� there is no � � � with �
�� 
 aT��
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Since this condition on � is not a�ected by positive scaling� we may assume that the
sum of the weights is one� We can thus pose our problem in terms of the following
convex optimization problem�

� � min
� � �

�� � 	 	 	� �L � �

aT�� �
��� 
���
��

Let �� denote a minimizer 
which in fact is unique� for the problem 
���
��� Then
we have�

a � A �� � � �� 
���
��

and moreover if � � �� then the LQG design that corresponds to weights �� achieves
the speci�cation 
see section �
�
���� So �nding � and �� will completely solve our
problem�

The equivalence 
���
�� can be given a simple interpretation� aT� is the LQG
cost� using the weights �� that a design corresponding to a would achieve� if it were
feasible� �
�� is simply the smallest achievable LQG cost� using weights �� It follows
that if aT� � �
��� then the speci�cation corresponding to a is not achievable�
since it would beat the optimal LQG design� Thus� we can interpret 
���
�� as the
problem of �nding the LQG weights such that the LQG cost of a design that just
meets the speci�cation a most favorably compares to the LQG�optimal cost�

We can evaluate a subgradient of aT�� �
�� 
in fact� it is di�erentiable� using
the formula given in section �������

a�

�
�	

��
Hlqg���
���

�L
Hlqg���



�� � 


�
aT�� �
��

�
� 
���
��

where Hlqg�� is the LQG�optimal design for the weights �� We can therefore
solve 
���
�� using any of the algorithms described in this chapter� We will give
some of the details for the ellipsoid algorithm�

We can handle the equality constraint �� � 	 	 	� �L � � by letting

x �

�
�	

��
���

�L��



��

be our optimization variables� and setting

�L � �� �� � 	 	 	 � �L���

The inequality constraint on x is then

max f�x�� � � � ��xL��� x� � 	 	 	� xL�� � �g � �� 
���
��
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A subgradient g � RL�� for the objective is readily derived from 
���
���

g �

�
�	

a� � ��
Hlqg���� aL � �L
Hlqg���
���

aL�� � �L��
Hlqg���� aL � �L
Hlqg���



�� �

where Hlqg�� is optimal for the current weights�
As initial ellipsoid we take the ball of radius one centered at the weight vector

x��� �

�
�	

��L
���

��L



�� �

Since this ball contains the feasible set given by 
���
��� we are guaranteed that
every feasible minimizer of 
���
�� is inside our initial ellipsoid�

We can now directly apply the algorithm of section ������� We note a few
simpli�cations to the stopping criterion� First� the feasible set is clearly not empty�
so the algorithm will not terminate during a feasibility cut� Second� the stopping
criterion can be�

until
�
aT� � �
�� or �i
Hlqg��� � ai for i � �� � � � � L

�
�

The algorithm will terminate either when a is known to be infeasible 
aT� � �
����
or when a feasible design has been found�

This ellipsoid algorithm is guaranteed to terminate in a solution to our problem�
except for the case when the speci�cation a is Pareto optimal� i�e�� is itself an LQG�
optimal speci�cation for some weight vector� In this exceptional case� Hlqg�� and �
will converge to the unique design and associated weights that meet the speci�cation
a� This exceptional case can be ruled out by adding a small tolerance to either of
the inequalities in the stopping criterion above�

14.5.1 Some Numerical Examples

We now demonstrate this algorithm on the standard example plant from section 
���
with the process and sensor noise power spectral densities described in section ���
��
and the objectives

��
H� � Eu�� ��
H� � E y�p� ��
H� � E �y�p�

which are the variance of the actuator signal� the system output signal yp� and its
derivative� The optimization variables are the weights �� and �� associated with
the actuator and system output variance� respectively� The weight for the system
output rate is given by � � �� � ��� The initial ellipsoid E� is a circle centered
at ���� ����T of radius

p
���	 it includes the triangle of feasible weights � 
see

�gure �������
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speci�cation RMS
u� RMS
yp� RMS
 �yp� achievable#
� � ��� � ���� � ���� yes

 � ��� � ���� � ���� no
� � ���� � ���� � ���� yes
� � ����� � ������ � ���� no

Table ���� Four di�erent speci�cations on the RMS values of u� yp� and
�yp	

For speci�cations that are either deep inside or far outside the feasible set A�
the ellipsoid algorithm rapidly �nds a set of weights for an LQG design that either
achieves the speci�cation or proves that the speci�cation is infeasible� To get more
than a few iterations� speci�cations close to Pareto optimal must be chosen� We
will consider the four sets of speci�cations shown in table ���
� Speci�cations �
and � are achievable 
the latter just barely�� while 
 and � are unachievable 
the
latter only barely�� The results of running the ellipsoid algorithm on each of these
speci�cations is shown in table �����

These results can be veri�ed by checking whether each speci�cation is above or
below the tradeo� surface� Since each speci�cation has the same limit on RMS
 �yp��
we can plot a tradeo� curve between RMS
yp� and RMS
u� when RMS
 �yp� is
required to be below ����� Such a tradeo� curve is shown in �gure ������ As
expected� speci�cation � is achievable and speci�cation 
 is not� Speci�cations �
and � are very close to the tradeo� boundary� but on opposite sides�

The execution of the ellipsoid algorithm is shown in

� �gure ����� for speci�cation ��

� table ���� for speci�cation 
�

� �gure ���
� for speci�cation ��

� �gure ���
� for speci�cation ��
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quantity spec� � spec� 
 spec� � spec� �

p
a

���
����
����

���
����
����

����
����
����

�����
������
����

iterations 
� � �� ��
� evaluations �
 � �� 



�
�������
�������
����
��

�������
������

�������

����

�
���
���
�����
�

����
�

���
��

�������

p
J

�������
�������
�������

�����
�
�������
����
�


�����


�������
�������

�������
�������
�������

�
�� ������
� ����
��� �������� ��������

aT � �������
 ����
��� �������� ��������

exit condition J � a �
�� 
 aT � J � a �
�� 
 aT�
achievable# yes no yes no

Table ���� Result of running the ellipsoid algorithm on each of the four
speci�cations from table ��	�	
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R
M
S

y
p
�
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u�

q���
spec	 �

q

�
��

spec	 �

q���
spec	 �
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�
���

spec	 �

� ���� ��� ���� ��� ���� ���
�

����

���

����

���

����

���

Figure ����� The tradeo� curve between RMS�yp� and RMS�u�� with the
speci�cation RMS� �yp� � ����� is shown� together with the four speci�cations
from table ��	�	 Since these four speci�cations all require that RMS� �yp� �
����� each speci�cation will be achievable if it lies on or above the tradeo�
curve	 For comparison� the tradeo� curve between RMS�yp� and RMS�u�
with no speci�cation on RMS� �yp� is shown with a dashed line	
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�
�

��

E�

E�

E��

E��

q

�
���

x�

���� � ��� ��� ��	 ��� � ���
����

�

���

���

��	

���

�

���

Figure ����	 The progression of the ellipsoid algorithm is shown for spec�
i�cation � in table ��	�	 The initial ellipsoid� E�� is a circle of radius

p
���

centered at x��	 � ���� ����T that includes the triangular set of feasible
weights	 The ellipsoid algorithm terminates at the point x�� which corre�
sponds to weights for which the LQG�optimal controller satis�es speci�ca�
tion �	
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iter� �
p
J �
�� aT � action

�
�������
�������
�������

�������
����
��
�������

������� ������� cut �



�������
��
����
����
��

�������
�������
�������

����
�� �����
� cut �

�
����

��
�������
�������

� � � cut ��

�
�������

��������
���
�
�

� � � cut ��

�
�������
��
�
��
�������

������

�������
�������

����
�� ������� cut �

�
�����
��
����
��
�������

� � � cut ��

�
����
��
������

�������

�������
�������
����
��

����
�� ����
�� cut �

�
�������
��
��


�����
�

�������
�������
�����
�

����
�� ����
�� cut �

�
�������
������

�������

�����
�
�������
����
�


����
�� ����
�� done

Table ���� Tracing the execution of the ellipsoid algorithm with speci��
cation � from table ��	�	 After � iterations ��	� � aT	� so speci�cation �
has been proven to be unachievable	
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iteration

RMS�u��
p
a�

RMS�yp��
p
a�

RMS� �yp��
p
a�

� �� �� �� �� �� 	�
���

��	

��


���

���

�

���

���

���

���

���

Figure ����
 The normalized values of RMS�u�� RMS�yp�� and RMS� �yp�
are plotted versus iteration number for speci�cation � in table ��	�	 These
values are those achieved by the LQG�optimal regulator with the current
weights 		 At iteration �� all three curves are simultaneously at or below
�	�� so the algorithm terminates� it has found weights for which the LQG�
optimal regulator satis�es the speci�cations	
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a
T
�
�
�

�
�

iteration

� � �� �� �� �� �� ��
����

���


����

����

����

����

Figure ����� The di�erence between aT	 and ��	� is plotted for each
iteration of the ellipsoid algorithm for speci�cation � in table ��	�	 At
iteration ��� ��	� � aT	 �this point is not plotted�� and the algorithm
terminates� it has proven that the speci�cations are unachievable	 Note
that at iteration ��� the weights almost proved that the speci�cation is
unachievable	
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14.6 Complexity of Convex Optimization

We have seen simple algorithms that can be used to compute the global minimum of
a convex or quasiconvex function� In fact� these optimization problems are not only
solvable� they are intrinsically tractable� roughly speaking� they can be solved with
a �reasonable� amount of computation� For more general optimization problems�
while we can often compute a local minimum with reasonable computation� the
computation of the global minimum usually requires vastly more computation� and
so is tractable only for small problems�

In this section we informally discuss the complexity of di�erent types of �global�
optimization problems� which involves the following ideas�

� a class of problems�

� a notion of the size of a problem and required accuracy of solution�

� a measure of computation e�ort�

The complexity describes how the minimum computation e�ort required depends
on the problem size and required accuracy�

The four classes of optimization problems that we will consider are�

� Convex quadratic program �QP�� compute

min
�
xTAx

�� Cx � B
�
�

where x � Rn� B � R
k� and A � ��

� General QP � compute

min
�
xTAx

�
� Cx � B

�
�

where x � Rn and B � R
k�

� Convex program� compute

min
x�K

f�x�

where f � Rn
� R is convex� and K � Rn is a convex set�

� General program� compute

min
x�K

f�x�

where f � Rn
� R and K � Rn�

In the following sections we describe some measures of the relative complexities of
these problems�
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14.6.1 Bit Complexity of Quadratic Programs

The problem size is measured by the number of bits required to describe the matrices
A and C� and the vector B� The computational e�ort is measured by the number
of bit operations required to 	nd the �exact� solution�

Convex QP
s have polynomial bit complexity� they can be solved in a number
of bit operations that grows no faster than a polynomial function of the problem
size� This celebrated result was obtained by the Soviet mathematician Khachiyan
in ��
� using a variation of the ellipsoid algorithm�

In contrast� it is known that general QP
s have a bit complexity that is the
same as many other �hard� problems� The only known algorithms that solve these
�hard� problems require a number of bit operations that grows exponentially with
the problem size� Moreover� it is generally believed that there are no algorithms
that solve these problems using a number of bit operations that grows only as fast
a polynomial in the problem size� See the Notes and References�

In conclusion� in the sense of bit complexity� convex QP
s are �tractable��
whereas no non�combinatorial algorithms for solving general QP
s are known� and
it is widely believed that none exist�

14.6.2 Information Based Complexity

Information based complexity is measured by the number of function and gradient
�or subgradient� evaluations of f that are needed to compute the minimum to a
guaranteed accuracy� information about f is only known through these function
and gradient evaluations� The problem size is measured by the dimension n and
required accuracy ��

Roughly speaking� bit complexity counts all operations� and assumes that the
function to be minimized is completely speci	ed� whereas information based com�
plexity counts only the number of calls to a subroutine that evaluates the function
and a gradient�

Many sharp bounds are known for the information based complexity of convex
and general programs� For example� convex programs can be solved to an accuracy
of � with no more than p�n� log����� function and subgradient evaluations� where
p is a speci	c polynomial� It is also known that the minimum number of function
and gradient evaluations required to solve a general program grows like �����n� i�e��
exponentially�

Therefore� the information based complexity of general programs is enormously
larger than convex programs�

14.6.3 Some Caveats

We warn the reader that the results described above treat idealized versions of
complexity� which may or may not describe the practical tractability�
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For example� the simplex method for solving convex QP
s works very well in
practice� even though it is not a polynomial algorithm� The ellipsoid algorithm for
solving convex QP
s� on the other hand� is polynomial� but so far has not performed
better in practice than the simplex method�

As another example� we note that the information based complexity of general
QP
s and convex QP
s is the same� and no bigger than a polynomial in n � k
�because once we know what QP we must solve� no more subroutine calls to the
function evaluator are required�� In contrast� the bit complexity of convex and
general QP
s is generally considered to be enormously di�erent� which is consistent
with practical experience� The low information based complexity of general QP
s
is a result� roughly speaking� of local computations being �free�� with �charges�
incurred only for function evaluations�

14.6.4 Local Versus Global Optimization

General programs are often �solved� in practice using local� often descent� methods�
These algorithms often converge rapidly to a local minimum of the function f � In
many cases� this local minimum is the global minimum� But verifying that a given
local minimum is actually global has a high computational cost�

Local optimization methods often work well for design tasks� they rapidly 	nd
local minima� which in many cases are actually global� but in return� they give up
the certainty of determining the global minimum� Often� an acceptable design can
be found using a local optimization method�

However� local methods cannot determine a limit of performance� global opti�
mization is needed to con	dently know that a design cannot be achieved� i�e�� lies
in the unshaded region described in section ����� of chapter �� So the value of con�
vexity is that not only can we 	nd designs that we know are �good� �i�e�� nearly
Pareto optimal�� we can also� with reasonable computation� determine performance
limits�
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Notes and References

Descent Methods

General descent methods are described in� e�g�� Luenberger �Lue���� General methods for
nondi�erentiable optimization are surveyed in Polak �Pol���� Kiwiel�s monograph �Kiw���
gives a detailed description of many descent algorithms for nondi�erentiable optimization�
see also Fukushima �Fuk��� and the references cited there� In the Soviet literature� descent
methods are sometimes called relaxation processes� see for example the survey by Lyubich
and Maistrovskii �LM����

Specializations of general�purpose algorithms to nondi�erentiable convex optimization
include Wolfe�s conjugate subgradients algorithm �Wol��� and Lemarechal�s Davidon
method for nondi�erentiable objectives �Lem����

Nondifferentiable Convex Optimization

A good general reference on convex optimization is Levitin and Polyak �LP���� which treats
the in�nite�dimensional case� but considers mostly smooth problems� Good general refer�
ences on nondi�erentiable convex optimization� which describe some methods presented in
this chapter are Akg	ul �Akg���� Evtushenko �Evt���� and Demyanov and Vasilev �DV����
In �Sho���� Shor describes the subgradient algorithm� a precursor of the ellipsoid method�
and a variable�metric subgradient algorithm� which is the ellipsoid method as he originally
developed it�

Rockafellar�s books �Roc��� Roc��� describe subgradients and convex optimization� but
not the algorithms we have presented in this chapter�

Cutting-Plane Methods

The cutting�plane algorithm described in section 
����
 is generally attributed to Kel�
ley �Kel���� although it is related to earlier algorithms� e�g�� Cheney and Goldstein�s
method �CG�	�� which they call Newton�s method for convex programming� In fact� Kel�
ley�s description of the algorithm is for the constrained case� he shows how to convert the
unconstrained problem into one with constraints and linear objective�

Convergence proofs are given in� e�g�� Kelley �Kel���� Levitin and Polyak �LP��� x����
Demyanov and Vasilev �DV��� x
���� and Luenberger �Lue��� p��	������ The cutting�
plane algorithm for constrained optimization that we presented in section 
������ and a
proof of its convergence� can be found in Demyanov and Vasilev �DV��� p������
��

Elzinga and Moore �EM��� give a cutting�plane algorithm for the constrained problem
that has two possible advantages over the one described in section 
������ Their algorithm
generates feasible iterates� so we can use the simple stopping criteria used in the algorithm
for the unconstrained problem� and we do not have to accept �slightly violated constraints��
Their algorithm also drops old constraints� so that the linear programs solved at each
iteration do not grow in size as the algorithm proceeds� Demyanov and Vasilev �DV���
x
�	���� describe the extremum basis method� a cutting�plane algorithm that maintains a
�xed number of constraints in the linear program� See also Gonzaga and Polak �GP�	��

Ellipsoid Methods

Two early articles that give algorithms for minimizing a quasiconvex function using the
idea that a quasigradient evaluated at a point rules out a half�space containing the point



NOTES AND REFERENCES 349

are Newman �New��� and Levin �Lev���� In these precursors of the ellipsoid algorithm�
the complexity of the set which is known to contain a minimizer increases as the algorithm
proceeds� so that the computation per iteration grows� as in cutting�plane methods�

The ellipsoid algorithm was developed in the 
����s in the Soviet Union by Shor� Yudin�
and Nemirovsky� A detailed history of its development� including English and Russian
references� appears in chapter � of Akg	ul �Akg���� It was used in 
��� by Khachiyan
in his famous proof that linear programs can be solved in polynomial time� an English
translation appears in �Kha�	� �see also G�acs and Lov�azs �GL�����

The 
��
 survey by Bland� Goldfarb� and Todd �BGT��� contains a very clear description
of the method and has extensive references on its development and early history� concen�
trating on its application to linear programming� Our exposition follows Chapter � of the
book by Gr	otschel� Lov�asz� and Schrijver �GLS���� In �Gof�
� Gof���� Go�n gives an
interpretation of the ellipsoid algorithm as a variable�metric descent algorithm�

Ecker and Kupferschmid �EK�
� EK��� describe the results of extensive numerical tests
on a large number of benchmark optimization problems� comparing an ellipsoid method to
other optimization algorithms� Some of these problems are not convex� but the ellipsoid
method seems to have done very well �i�e�� found feasible points with low function values�
even though it was not designed for nonconvex optimization� In the paper �KME����
Kupferschmid et al� describe an application of an ellipsoid algorithm to the nonconvex�
but important� problem of feedback gain optimization�

Initializing the Cutting-Plane and Ellipsoid Algorithms

In many cases we can determine� a priori� a box or ellipsoid that is guaranteed to contain
a minimizer� we saw an example in the LQG weight selection problem�

For the cutting�plane algorithm� if we do not know an initial box that is guaranteed to
contain a minimizer� we can guess an initial box� if xk stays on the box boundary for too
many iterations� then we increase the box size and continue� �By continue� we mean that
all of the information gathered in previous function and subgradient evaluations can be
kept�� Roughly speaking� once xk lands inside the box� we can be certain that our initial
box was large enough �provided the Lagrange multipliers in the linear program are positive
at the iterate inside the box��

In many cases the ellipsoid algorithm converges to a minimizer even if no minimizers were
inside the initial ellipsoid� although of course there is no guarantee that this will happen�
Of course� this can only occur because at each iteration we include in our new ellipsoid
some points that were not in the previous ellipsoid� These new points normally represent
�wasted� ellipsoid volume� since we are including points that are known not to include a
minimizer� But in the case where the minimizer lies outside the initial ellipsoid� these new
points allow the ellipsoid to twist around so as to include a minimizer�

If an iterate xk falls outside the initial ellipsoid� it is good practice to restart the algorithm
with a larger ellipsoid� We have found a very slow rise in the total number of ellipsoid
algorithm iterations required as the size of the initial ellipsoid is increased� despite the fact
that the volume of the initial ellipsoid increases very rapidly with its semi�axes�

LQG Weight Selection

The informal method of adjusting weights is used extensively in LQG design� In the
LQG problem� the maximum value rule�of�thumb for initial weights is often referred to as
Bryson�s rule �BH����
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In �HS���� Harvey and Stein state�

To use LQG methods� the designer must reduce all of his varied performance
requirements to a single criterion which is constrained to be quadratic in state
and controls� So little is known about the relationship between such speci�c
criteria and more general control design speci�cations that the designer must
invariably resort to trial and error iterations�

In Stein �Ste�	�� we �nd

Probably the most important area about which better understanding �of LQG
weight selection� is needed is the relationship between the weighting parame�
ters selected for the basic scalar performance index and the resulting regulator
properties� Practitioners have wrestled with this relationship for nearly two
decades� trying various intuitive ways to select a �good set of weights� to
satisfy various design speci�cations�

We have observed that the mapping from LQG weights into the resulting optimal LQG
cost� i�e�� the dual function �� is concave� We exploited this property to design an algorithm
that solves the LQG multicriterion feasibility problem�

We were originally unaware of any published algorithm that solves this feasibility prob�
lem� but recently discovered an article by Toivonen and M	akil	a �TM�	�� which uses a
quadratically convergent method to minimize aT�� ���� over � � ��

The deep�cut algorithm of section 
����� can be used with the inequality speci�cation
aT� � ���� � �� Such an algorithm will determine whether the RMS speci�cations are
achievable or not� but� unlike the algorithm we described� might not �nd a design meeting
the speci�cation when the speci�cations are achievable�

Complexity of Convex Optimization
Bit complexity is described in� for example� the book by Garey and Johnson �GJ�	�� The
�hard� problems we referred to in section 
����
 are called NP�complete� The results on bit
complexity of quadratic programs are described in Pardalos and Rosen �PR���� Pardalos
and Rosen also describe some methods for solving general QP�s� these methods require
large computation times on supercomputers� whereas very large convex QP�s are readily
solved on much smaller computers�

The results on the information based complexity of optimization problems are due to
Nemirovsky and Yudin� and described in the clear and well written book �NY�
� and
article �YN���� Our description of the problem is not complete� the problems considered
must also have some known bound on the size of a subgradient over K �which we used in
our proofs of convergence��



Chapter 15

Solving the Controller Design
Problem

In this chapter we describe methods for forming and solving �nite�dimensional
approximations to the controller design problem� A method based on the
parametrization described in chapter � yields an inner approximation of the re�
gion of achievable speci�cations in performance space� For some problems� an
outer approximation of this region can be found by considering a dual problem�
By forming both approximations� the controller design problem can be solved to
an arbitrary� and guaranteed� accuracy�

In chapter � we argued that many approaches to controller design could be described
in terms of a family of design speci�cations that is parametrized by a performance

vector a � RL�

H satis�es Dhard� ���H� � a�� � � � � �L�H� � aL� ������

Some of these speci�cations are unachievable� the designer must choose among
the speci�cations that are achievable� In terms of the performance vectors� the
designer must choose an a � A� where A denotes the set of performance vectors that
correspond to achievable speci�cations of the form ������� We noted in chapter �
that the actual controller design problem can take several speci�c forms� e�g�� a
constrained optimization problem with weighted	sum or weighted	max objective�
or a simple feasibility problem�

In chapters 
��� we found that in many controller design problems� the hard
constraint Dhard is convex �or even a�ne� and the functionals ��� � � � � �L are convex�
we refer to these as convex controller design problems� We refer to a controller
design problem in which one or more of the functionals is quasiconvex but not
convex as a quasiconvex controller design problem� These controller design problems
can be considered convex �or quasiconvex� optimization problems over H� since H

351
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has in�nite dimension� the algorithms described in the previous chapter cannot be
directly applied�

15.1 Ritz Approximations

The Ritz method for solving in�nite	dimensional optimization problems consists of
solving the problem over larger and larger �nite	dimensional subsets� For the con	
troller design problem� the Ritz approximation method is determined by a sequence
of nz � nw transfer matrices

R�� R�� R�� � � � � H� ����
�

We let

HN
�
�

��
�R� �

X
��i�N

xiRi

������ xi � R� � � i � N

��
�

denote the �nite	dimensional a�ne subset of H that is determined by R� and the
next N transfer matrices in the sequence� The Nth Ritz approximation to the
family of design speci�cations ������ is then

H satis�es Dhard� ���H� � a�� � � � � �L�H� � aL� H � HN � ������

The Ritz approximation yields a convex �or quasiconvex� controller design problem�
if the original controller problem is convex �or quasiconvex�� since it is the original
problem with the a�ne speci�cation H � HN adjoined�

The Nth Ritz approximation to the controller design problem can be considered
a �nite	dimensional optimization problem� so the algorithms described in chapter ��
can be applied� With each x � RN we associate the transfer matrix

HN �x�
�
� R� �

X
��i�N

xiRi� ������

with each functional �i we associate the function �
�N�
i � RN � R given by

�
�N�
i �x�

�
� �i�HN �x��� ������

and we de�ne

D�N� �
� fx j HN �x� satis�es Dhardg � ������

Since the mapping from x � RN into H given by ������ is a�ne� the functions

�
�N�
i given by ������ are convex �or quasiconvex� if the functionals �i are� similarly

the subsets D�N� � RN are convex �or a�ne� if the hard constraint Dhard is� In
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section ���� we showed how to compute subgradients of the functions �
�N�
i � given

subgradients of the functionals �i�

Let AN denote the set of performance vectors that correspond to achievable
speci�cations for the Nth Ritz approximation ������� Then we have

A� � � � � � AN � � � � � A�

i�e�� the Ritz approximations yield inner or conservative approximations of the
region of achievable speci�cations in performance space�

If the sequence ����
� is chosen well� and the family of speci�cations ������ is
well behaved� then the approximations AN should in some sense converge to A as
N � �� There are many conditions known that guarantee this convergence� see
the Notes and References at the end of this chapter�

We note that the speci�cation Hslice of chapter �� corresponds to the N � 

Ritz approximation�

R� � H�c�� R� � H�a� �H�c�� R� � H�b� �H�c��

15.1.1 A Specific Ritz Approximation Method

A speci�c method for forming Ritz approximations is based on the parametriza	
tion of closed	loop transfer matrices achievable by stabilizing controllers �see sec	
tion 
�
����

Hstable � fT� � T�QT� j Q stableg � ����
�

We choose a sequence of stable nu � ny transfer matrices Q�� Q�� � � � and form

R� � T�� Rk � T�QkT�� k � �� 
� � � � ������

as our Ritz sequence� Then we have HN � Hstable� i�e�� we have automatically
taken care of the speci�cation Hstable�

To each x � RN there corresponds the controllerKN �x� that achieves the closed	
loop transfer matrix HN �x� � HN � in the Nth Ritz approximation� we search over
a set of controllers that is parametrized by x � RN � in the same way that the family
of PID controllers is parametrized by the vector of gains� which is in R�� But the
parametrization KN �x� has a very special property� it preserves the geometry of the

underlying controller design problem� If a design speci�cation or functional is closed	
loop convex or a�ne� so is the resulting constraint on or function of x � RN � This
is not true of more general parametrizations of controllers� e�g�� the PID controllers�
The controller architecture that corresponds to the parametrizationKN �x� is shown
in �gure �����
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Figure ���� The Ritz approximation ���������	
 corresponds to a
parametrized controller KN �x
 that consists of two parts� a nominal con�
troller Knom� and a stable transfer matrix Q that is a linear combination of
the �xed transfer matrices Q�� � � � � QN � See also section ��� and �gure ����

15.2 An Example with an Analytic Solution

In this section we demonstrate the Ritz method on a problem that has an analytic
solution� This allows us to see how closely the solutions of the approximations agree
with the exact� known solution�

15.2.1 The Problem and Solution

The example we will study is the standard plant from section 
��� We consider the
RMS actuator e�ort and RMS regulation functionals described in sections ���
��
and �����
�

RMS�yp�
�
� �rms yp�H� �

�
kH��Wsensork

�
� � kH��Wprock

�
�

����
RMS�u�

�
� �rms u�H� �

�
kH��Wsensork

�
� � kH��Wprock

�
�

����
�
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We consider the speci�c problem�

min
�rms yp�H� � ���

�rms u�H�� ������

The solution� ��rms u � �����
� can be found by solving an LQG problem with
weights determined by the algorithm given in section �����

15.2.2 Four Ritz Approximations

We will demonstrate four di�erent Ritz approximations� by considering two di�erent
parametrizations �i�e�� T�� T�� and T� in ����
�� and two di�erent sequences of stable
Q�s�

The parametrizations are given by the formulas in section 
�� using the two
estimated	state	feedback controllers K�a� and K�d� from section 
�� �see the Notes
and References for more details�� The sequences of stable transfer matrices we
consider are

Qi �

	
�

s� �


i

� �Qi �

	
�

s� �


i

� i � �� � � � �������

We will denote the four resulting Ritz approximations as

�K�a�� Q�� �K�a�� �Q�� �K�d�� Q�� �K�d�� �Q�� �������

The resulting �nite	dimensional Ritz approximations of the problem ������ turn
out to have a simple form� both the objective and the constraint function are con	
vex quadratic �with linear and constant terms� in x� These problems were solved
exactly using a special algorithm for such problems� see the Notes and References
at the end of this chapter� The performance of these four approximations is plot	
ted in �gure ���
 along with a dotted line that shows the exact optimum� �����
�
Figure ���� shows the same data on a more detailed scale�

15.3 An Example with no Analytic Solution

We now consider a simple modi�cation to the problem ������ considered in the
previous section� we add a constraint on the overshoot of the step response from
the reference input r to the plant output yp� i�e��

min
�rms yp�H� � ���
�os�H��� � ���

�rms u�H�� �����
�

Unlike ������� no analytic solution to �����
� is known� For comparison� the optimal
design for the problem ������ has a step response overshoot of ���
��
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Figure ���� The optimum value of the �nite�dimensional inner approxi�
mation of the optimization problem �����
 versus the number of terms N
for the four di�erent Ritz approximations ������
� The dotted line shows
the exact solution� RMS�u
 � �������
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Figure ���� Figure ���� is re�plotted to show the convergence of the �nite�
dimensional inner approximations to the exact solution� RMS�u
 � �������
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The same four Ritz approximations ������� were formed for the problem �����
��
and the ellipsoid algorithm was used to solve them� The performance of the approx	
imations is plotted in �gure ����� which the reader should compare to �gure ���
�
The minimum objective values for the Ritz approximations appear to be converging
to ������ whereas without the step response overshoot speci�cation� the minimum
objective is �����
� We can interpret the di�erence between these two numbers as
the cost of reducing the step response overshoot from ���
� to ����
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Figure ���� The optimum value of the �nite�dimensional inner approxi�
mation of the optimization problem ������
 versus the number of terms N
for the four di�erent Ritz approximations ������
� No analytic solution to
this problem is known� The dotted line shows the optimum value of RMS�u

without the step response overshoot speci�cation�

15.3.1 Ellipsoid Algorithm Performance

The �nite	dimensional optimization problems produced by the Ritz approximations
of �����
� are much more substantial than any of the numerical example problems
we encountered in chapter ��� which were limited to two variables �so we could plot
the progress of the algorithms�� It is therefore worthwhile to brie�y describe how
the ellipsoid algorithms performed on the N � 
� �K�a�� Q� Ritz approximation� as
an example of a demanding numerical optimization problem�

The basic ellipsoid algorithm was initialized with A� � ����I� so the initial
ellipsoid was a sphere with radius 
��
� All iterates were well inside this initial
ellipsoid� Moreover� increasing the radius had no e�ect on the �nal solution �and�
indeed� only a small e�ect on the total computation time��
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The algorithm took �� iterations to �nd a feasible point� and �
�� iterations for
the maximum relative error to fall below ����� The maximum and actual relative
errors versus iteration number are shown in �gure ����� The relative constraint
violation and the normalized objective function value versus iteration number are
shown in �gure ����� From these �gures it can be seen that the ellipsoid algo	
rithm produces designs that are within a few percent of optimal within about ����
iterations�
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Figure ���� The ellipsoid algorithm maximum and actual relative errors
versus iteration number� k� for the solution of the N � �� �K�a�� Q
 Ritz
approximation of ������
� After �� iterations a feasible point has been found�
and after ���� iterations the objective has been computed to a maximum
relative error of ����� Note the similarity to �gure ������ which shows a
similar plot for a much simpler� two variable� problem�

For comparison� we solved the same problem using the ellipsoid algorithm with
deep	cuts for both objective and constraint cuts� with the same initial ellipsoid�
A few more iterations were required to �nd a feasible point ����� and somewhat
fewer iterations were required to �nd the optimum to within ���� �
�
��� Its
performance is shown in �gure ���
� The objective and constraint function values
versus iteration number for the deep	cut ellipsoid algorithm were similar to the basic
ellipsoid algorithm�

The number of iterations required to �nd the optimum to within a guaranteed
maximum relative error of ���� for each N �for the �K�a�� Q� Ritz approximation�
is shown in �gure ���� for both the regular and deep	cut ellipsoid algorithms� �For
N � � the step response overshoot constraint was infeasible in the �K�a�� Q� Ritz
approximation��
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Figure ���� The ellipsoid algorithm constraint and objective functionals
versus iteration number� k� for the solution of the N � �� �K�a�� Q
 Ritz
approximation of ������
� For the constraints� the percentage violation is
plotted� For the objective� �rms u� the percentage di�erence between the
current and �nal objective value� ��rms u� is plotted� It is hard to distinguish
the plots for the constraints� but the important point here is the �steady�
stochastic� nature of the convergence� Note that within ���� iterations�
designs were obtained with objective values and contraints within a few
percent of optimal and feasible� repsectively�
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Figure ���� The deep�cut ellipsoid algorithm maximum and actual rel�
ative errors versus iteration number� k� for the solution of the N � ��
�K�a�� Q
 Ritz approximation of ������
� After �� iterations a feasible point
has been found� and after ���� iterations the objective has been computed
to a maximum relative error of ����� Note the similarity to �gure �����
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Figure ���� The number of ellipsoid iterations required to compute upper
bounds of RMS�u
 to within ����� versus the number of terms N � is shown

for the Ritz approximation �K�a�� Q
� The upper curve shows the iterations
for the regular ellipsoid algorithm� The lower curve shows the iterations
for the deep�cut ellipsoid algorithm� using deep�cuts for both objective and
constraint cuts�
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15.4 An Outer Approximation via Duality

Figure ���� suggests that the minimum value of the problem �����
� is close to
������ since several di�erent Ritz approximations appear to be converging to this
value� at least over the small range of N plotted� The value ����� could reasonably
be accepted on this basis alone�

To further strengthen the plausibility of this conclusion� we could appeal to some
convergence theorem �one is given in the Notes and References�� But even knowing
that each of the four curves shown in �gure ���� converges to the exact value of
the problem �����
�� we can only assert with certainty that the optimum value lies
between �����
 �the true optimum of ������� and ������ �the lowest objective value
computed with a Ritz approximation��

This is a problem of stopping criterion� which we discussed in chapter �� in the
context of optimization algorithms� accepting ����� as the optimum value of �����
�
corresponds to a �quite reasonable� heuristic stopping criterion� Just as in chap	
ter ��� however� a stopping criterion that is based on a known lower bound may be
worth the extra computation involved�

In this section we describe a method for computing lower bounds on the value
of �����
�� by forming an appropriate dual problem� Unlike the stopping criteria for
the algorithms in chapter ��� which involve little or no additional computation� the
lower bound computations that we will describe require the solution of an auxiliary
minimum H� norm problem�

The dual function introduced in section ����
 produces lower bounds on the so	
lution of �����
�� but is not useful here since we cannot exactly evaluate the dual
function� except by using the same approximations that we use to approximately
solve �����
�� To form a dual problem that we can solve requires some manipulation
of the problem �����
� and a generalization of the dual function described in sec	
tion ����
� The generalization is easily described informally� but a careful treatment
is beyond the scope of this book� see the Notes and References at the end of this
chapter�

We replace the RMS actuator e�ort objective and the RMS regulation constraint
in �����
� with the corresponding variance objective and constraint� i�e�� we square
the objective and constraint functionals �rms u and �rms yp� Instead of considering
the step response overshoot constraint in �����
� as a single functional inequality�
we will view it as a family of constraints on the step response� one constraint for
each t � �� that requires the step response at time t not exceed ����

min
�rms yp�H�� � ����

�step�t�H� � ���� t � �

�rms u�H�� �������

where �step�t is the a�ne functional that evaluates the step response of the ��� entry
at time t�

�step�t�H� � s���t��
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In this transformed optimization problem� the objective is quadratic and the con	
straints consist of one quadratic constraint along with a family of a�ne constraints
that is parametrized by t � R��

This suggests the following generalized dual functional for the problem ��������

���u� �y� �s�

�
� min
H � H

	
�u�rms u�H�� � �y�rms yp�H�� �

Z �

�

�s�t��
step�t�H� dt



� �������

where the �weights� now consist of the positive numbers �u and �y� along with
the function �s � R� � R�� So in equation ������� we have replaced the weighted
sum of �a �nite number of� constraint functionals with a weighted integral over the
family of constraint functionals that appears in ��������

It is easily established that �� is a convex functional of ��u� �y� �s� and that
whenever �y � � and �s�t� � � for all t � �� we have

���� �y� �s�� �����y �

Z �

�

����s�t� dt � �pri

where �pri is the optimum value of �����
�� Thus� computing ���� �y� �s� yields a
lower bound on the optimum of �����
��

The convex duality principle �equations ���������
� of section ���� suggests that
we actually have

�pri � max
�y � �� �s�t� � �

	
���� �y� �s�� �����y �

Z �

�

����s�t� dt



� �������

which in fact is true� So the optimization problem on the right	hand side of �������
can be considered a dual of �����
��

We can compute ���� �y� �s�� provided we have a state	space realization with
impulse response �s�t�� The objective in ������� is an LQG objective� with the
addition of the integral term� which is an a�ne functional of H� By completing
the square� it can be recast as an H�	optimal controller problem� and solved by �an
extension of� the method described in section �
�
� Since we can �nd a minimizer
H�
�� for the problem �������� we can evaluate a subgradient for ���

�sg��u� �y� �s� � ��u�rms u�H
�
��

� � �y�rms yp�H
�
��

� �

Z �

�

�s�t��
step�t�H�

�� dt

�c�f� section ��������
By applying a Ritz approximation to the in�nite	dimensional optimization prob	

lem �������� we obtain lower bounds on the right	hand� and hence left	hand sides
of ��������
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To demonstrate this� we use two Ritz sequences for �s given by the transfer
functions

�� � �� �i�s� �

	



s� 



i

� ��i�s� �

	
�

s� �


i

� i � �� � � � � �������

We shall denote these two Ritz approximations �� ��� The solution of the �nite	
dimensional inner approximation of the dual problem ������� is shown in �gure ����
for various values of N � Each curve gives lower bounds on the solution of �����
��

R
M
S
�u
�

N

��R
�

��I

�

��I
without step spec�

� � � � � �� �� �� �� �� ��
����

�����

����

�����

����

�����

����

Figure ���	 The optimum value of the �nite�dimensional inner approxi�
mation of the dual problem ������
 versus the number of termsN for the two
di�erent Ritz approximations ������
� The dotted line shows the optimum
value of RMS�u
 without the step response overshoot speci�cation�

The upper bounds from �gure ���� and lower bounds from �gure ���� are shown
together in �gure ������ The exact solution of �����
� is known to lie between the
dashed lines� this band is shown in �gure ����� on a larger scale for clarity�

The best lower bound on the value of �����
� is ����
�� corresponding to the
N � 
� f��g Ritz approximation of �������� The best upper bound on the value
of �����
� is ������� corresponding to the N � 
� �K�a�� Q� Ritz approximation
of �����
�� Thus we can state with certainty that

���
� � min
�rms yp�H� � ���
�os�H��� � ���

�rms u�H� � ������

We now know that ����� is within ������ �i�e�� ��� of the minimum value of the
problem �����
�� the plots in �gure ���� only strongly hint that this is so�
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Figure ����
 The curves from �gures ���� and ���� are shown� The solu�
tion of each �nite�dimensional inner approximation of ������
 gives an upper
bound of the exact solution� The solution of each �nite�dimensional inner
approximation of the dual problem ������
 gives a lower bound of the exact
solution� The exact solution is therefore known to lie between the dashed
lines�
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Figure ����� Figure ����� is shown in greater detail� The exact solution
of ������
 is known to lie inside the shaded band�
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We should warn the reader that we do not know how to form a solvable dual
problem for the most general convex controller design problem� see the Notes and
References�

15.5 Some Tradeoff Curves

In the previous three sections we studied two speci�c optimization problems� and
the performance of several approximate solution methods� In this section we con	
sider some related two	parameter families of design speci�cations and the same
approximate solution methods� concentrating on the e�ect of the approximations
on the computed region of achievable speci�cations in performance space�

15.5.1 Tradeoff for Example with Analytic Solution

We consider the family of design speci�cations given by

�rms yp�H� � �� �rms u�H� � �� �����
�

for the same example that we have been studying�
Figure ����
 shows the tradeo� curves for the �K�a�� Q� Ritz approximations

of �����
�� for three values of N � The regions above these curves are thus AN � A
is the region above the solid curve� which is the exact tradeo� curve� This �gure
makes clear the nomenclature �inner approximation��

15.5.2 Tradeoff for Example with no Analytic Solution

We now consider the family of design speci�cations given by

D����� � �rms yp�H� � �� �rms u�H� � �� �os�H��� � ���� �������

Inner and outer approximations for the tradeo� curve for ������� can be com	
puted using Ritz approximations to the primal and dual problems� For example� an
N � � �K�d�� Q� Ritz approximation to ������� shows that the speci�cations in the
top right region in �gure ����� are achievable� On the other hand� an N � � � Ritz
approximation to the dual of ������� shows that the speci�cations in the bottom
left region in �gure ����� are unachievable� Therefore the exact tradeo� curve is
known to lie in the shaded region in �gure ������

The inner and outer approximations shown in �gure ����� can be improved by
solving larger �nite	dimensional approximations to ������� and its dual� as shown
in �gure ������

Figure ����� shows the tradeo� curve for �����
�� for comparison� The gap
between this curve and the shaded region shows the cost of the additional step
response speci�cation� �The reader should compare these curves with those of
�gure ����� in section ����� which shows the cost of the additional speci�cation
RMS� �yp� � ���� on the family of design speci�cations �����
���
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Figure ����� The exact tradeo� between RMS�yp
 and RMS�u
 for the
problem ������
 can be computed using LQG theory� The tradeo� curves

computed using three �K�a�� Q
 Ritz inner approximations are also shown�
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Figure ����� With the speci�cation �os�H��
 � ���� speci�cations on
�rms yp and �rms u in the upper shaded region are shown to be achievable

by solving an N � � �K�d�� Q
 �nite�dimensional approximation of �����	
�
Speci�cations in the lower shaded region are shown to be unachievable by
solving an N � � � �nite�dimensional approximation of the dual of �����	
�
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Figure ����� From �gure ����� we can conclude that the exact tradeo�
curve lies in the shaded region�
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Figure ����� With larger �nite�dimensional approximations to �����	
 and
its dual� the bounds on the achievable limit of performance are substantially
improved� The dashed curve is the boundary of the region of achievable
performance without the step response overshoot constraint�
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Notes and References

Ritz Approximations

The term comes from Rayliegh�Ritz approximations to in�nite�dimensional eigenvalue
problems� see� e�g�� Courant and Hilbert �CH��� p����� The topic is treated in� e�g��
section ��� of Daniel �Dan���� A very clear discussion of Ritz methods� and their conver�
gence properties� appears in sections 	 and � of the paper by Levitin and Polyak �LP����

Proof that the Example Ritz Approximations Converge

It is often possible to prove that a Ritz approximation �works�� i�e�� that AN � A �in
some sense
 as N � �� As an example� we give a complete proof that for the four Ritz
approximations ������
 of the controller design problem with objectives RMS actuator
e�ort� RMS regulation� and step response overshoot� we have

�
N

AN � A� ������


This means that every achievable speci�cation that is not on the boundary �i�e�� not Pareto
optimal
 can be achieved by a Ritz approximation with large enough N �

We �rst express the problem in terms of the parameter Q in the free parameter represen�
tation of Dstable�

���Q

�
� �rms yp�T� � T�QT�
 � k 
G� �G�Qk��

���Q

�
� �rms u�T� � T�QT�
 � k 
G� �G�Qk��

���Q

�
� �os��� ���T� � T�QT�
�� � ��T 
 � k 
G� �G�Qkpk step � ��

where the 
Gi depend on submatrices of T�� and the Gi depend on the appropriate sub�
matrices of T� and T�� �These transfer matrices incorporate the constant power spectral
densities of the sensor and process noises� and combine the T� and T� parts since Q is
scalar�
 These transfer matrices are stable and rational� We also have G���
 � �� since P�
has a pole at s � ��

We have

A � fa j �i�Q
 � ai� i � �� �� �� for some Q � H�g �

AN �

�
a

����� �i�Q
 � ai� i � �� �� �� for some Q �

NX
i��

xiQi




�H� is the Hilbert space of Laplace transforms of square integrable functions from R� into
R
�

We now observe that ��� ��� and �� are continuous functionals on H�� in fact� there is an
M �� such that

���i�Q
� �i� 
Q

�� �MkQ� 
Qk�� i � �� �� �� ������
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This follows from the inequalities�����Q
� ��� 
Q

�� � kG�k�kQ� 
Qk�������Q
� ��� 
Q

�� � kG�k�kQ� 
Qk�������Q
� ��� 
Q

�� � kG��sk�kQ� 
Qk��

�The �rst two are obvious� the last uses the general fact that kABkpk step � kA�sk�kBk��
which follows from the Cauchy�Schwarz inequality�


We now observe that the sequence �s � �
�i� i � �� �� � � �� where � � �� is complete� i�e��
has dense span in H�� In fact� if this sequence is orthonormalized we have the Laplace
transforms of the Laguerre functions on R��

We can now prove ������
� Suppose a � A and � � �� Since a � A� there is a Q� � H�

such that �i�Q
�
 � ai� i � �� �� �� Using completeness of the Qi�s� �nd N and x� � RN

such that

kQ� �Q�Nk� � ��M�

where

Q�N
�
�

NX
i��

x�iQi�

By ������
� �i�Q
�

N 
 � ai � �� i � �� �� �� This proves ������
�

The Example Ritz Approximations
We used the state�space parametrization in section ���� with

P std
� �s
 � C�sI � A
��B�

where

A �

�
��� � �
� � �
� � �

�
� B �

�
�
�
�

�
� C �

�
� �� ��

�
�

The controllers K�a� and K�b� are estimated�state�feedback controllers with

L
�a�
est �

�
�������

����	���
���	�	��

�
� K

�a�
sfb �

�
�������� ������� �������

�
�

L
�d�
est �

�
�������

�������	
��������

�
� K

�d�
sfb �

�
������	 ������	� �������

�
�
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Problem with Analytic Solution
With the Ritz approximations� the problem has a single convex quadratic constraint� and
a convex quadratic objective� which are found by solving appropriate Lyapunov equations�
The resulting optimization problems are solved using a standard method that is described
in� e�g�� Golub and Van Loan �GL��� p���	����� Of course an ellipsoid or cutting�plane
algorithm could also be used�

Dual Outer Approximation for Linear Controller Design
General duality in in�nite�dimensional optimization problems is treated in the book by
Rockafellar �Roc���� which also has a complete reference list of other sources covering this
material in detail� See also the book by Anderson and Nash �AN��� and the paper by
Reiland �Rei�
��

As far as we know� the idea of forming �nite�dimensional outer approximations to a convex
linear controller design problem� by Ritz approximation of an appropriate dual problem�
is new�

The method can be applied when the functionals are quadratic �e�g�� weighted H� norms
of submatrices of H
� or involve envelope constraints on time domain responses� We do not
know how to form a solvable dual problem of a general convex controller design problem�
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Chapter 16

Discussion and Conclusions

We summarize the main points that we have tried to make� and we discuss some
applications and extensions of the methods described in this book� as well as some
history of the main ideas�

16.1 The Main Points

	 An explicit framework� A sensible formulation of the controller design problem
is possible only by considering simultaneously all of the closed	loop transfer
functions of interest� i�e�� the closed	loop transfer matrix H� which should
include every closed	loop transfer function necessary to evaluate a candidate
design�

	 Convexity of many speci�cations� The set of transfer matrices that meet a
design speci�cation often has simple geometry�a�ne or convex� In many
other cases it is possible to form convex inner �conservative� approximations�

	 E�ectiveness of convex optimization� Many controller design problems can
be cast as convex optimization problems� and therefore can be �e�ciently�
solved�

	 Numerical methods for performance limits� The methods described in this
book can be used both to design controllers �via the primal problem� and to
�nd the limits of performance �via the dual problem��

16.2 Control Engineering Revisited

In this section we return to the broader topic of control engineering� Some of the
major tasks of control engineering are shown in �gure �����

373
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	 The system to be controlled� along with its sensors and actuators� is modeled
as the plant P �

	 Vague goals for the behavior of the closed	loop system are formulated as a set
of design speci�cations �chapters ������

	 If the plant is LTI and the speci�cations are closed	loop convex� the resulting
feasibility problem can be solved �chapters �������

	 If the speci�cations are achievable� the designer will check that the design is
satisfactory� perhaps by extensive simulation with a detailed �probably non	
linear� model of the system�

System

Goals

Plant

Specs�

Feas�
Prob�

OK�
yes yes

nono

Figure ���� A partial �owchart of the control engineer�s tasks�

One design will involve many iterations of the steps shown in �gure ����� We
now discuss some possible design iterations�

Modifying the Specifications

The speci�cations are weakened if they are infeasible� and possibly tightened if they
are feasible� as shown in �gure ���
� This iteration may take the form of a search
over Pareto optimal designs �chapter ���

System

Goals

Plant

Specs�

Feas�
Prob�

OK�
yes yes

nono

Figure ���� Based on the outcome of the feasibility problem� the designer
may decide to modify �e�g�� tighten or weaken
 some of the speci�cations�
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Modifying the Control Configuration

Based on the outcome of the feasibility problem� the designer may modify the
choice and placement of the sensors and actuators� as shown in �gure ����� If the
speci�cations are feasible� the designer might remove actuators and sensors to see
if the speci�cations are still feasible� if the speci�cations are infeasible� the designer
may add or relocate actuators and sensors until the speci�cations become achievable�
The value of knowing that a given set of design speci�cations cannot be achieved
with a given con�guration should be clear�

System

Goals

Plant

Specs�

Feas�
Prob�

OK�
yes yes

nono

Figure ���� Based on the outcome of the feasibility problem� the designer
may decide to add or remove sensors or actuators�

These iterations can take a form that is analogous to the iteration described
above� in which the speci�cations are modi�ed� We consider a �xed set of speci�	
cations� and a family �which is usually �nite� of candidate control con�gurations�
Figure ���� shows fourteen possible control con�gurations� each of which consists of
some selection among the two potential actuators A� and A� and the three sensors
S�� S�� and S�� �These are the con�gurations that use at least one sensor� and one�
but not both� actuators� A� and A� might represent two candidate motors for a
system that can only accommodate one�� These control con�gurations are partially
ordered by inclusion� for example� A�S� consists of deleting the sensor S� from the
con�guration A�S�S��

These di�erent control con�gurations correspond to di�erent plants� and there	
fore di�erent feasibility problems� some of which may be feasible� and others in	
feasible� One possible outcome is shown in �gure ����� nine of the con�gurations
result in the speci�cations being feasible� and �ve of the con�gurations result in
the speci�cations being infeasible� In the iteration described above� the designer
could choose among the achievable speci�cations� here� the designer can choose
among the control con�gurations that result in the design speci�cation being feasi	
ble� Continuing the analogy� we might say that A�S�S� is a Pareto optimal control
con�guration� on the boundary between feasibility and infeasibility�
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A�S�S�S�

A�S�S� A�S�S� A�S�S�

A�S� A�S� A�S�

A�S�S�S�

A�S�S� A�S�S� A�S�S�

A�S� A�S� A�S�

Figure ���� The possible actuator and sensor con�gurations� with the
partial ordering induced by achievability of a set of speci�cations�

A�S�S�S�

A�S�S� A�S�S� A�S�S�

A�S� A�S� A�S�

A�S�S�S�

A�S�S� A�S�S� A�S�S�

A�S� A�S� A�S�

D achievable

D unachievable

Figure ���� The actuator and sensor con�gurations that can meet the
speci�cation D�

Modifying the Plant Model and Specifications

After choosing an achievable set of design speci�cations� the design is veri�ed� does
the controller� designed on the basis of the LTI model P and the design speci�ca	
tions D� achieve the original goals when connected in the real closed	loop system 
If the answer is no� the plant P and design speci�cations D have failed to accu	
rately represent the original system and goals� and must be modi�ed� as shown in
�gure �����

Perhaps some unstated goals were not included in the design speci�cations� For
example� if some critical signal is too big in the closed	loop system� it should be
added to the regulated variables signal� and suitable speci�cations added to D� to
constrain the its size�
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Figure ���� If the outcome of the feasibility problem is inconsistent with
designer�s criteria then the plant and speci�cations must be modi�ed to
capture the designer�s intent�

As a speci�c example� the controller designed in the rise time versus undershoot
tradeo� example in section �
��� would probably be unsatisfactory� since our design
speci�cations did not constrain actuator e�ort� This unsatisfactory aspect of the
design would not be apparent from the speci�cations�indeed� our design cannot
be greatly improved in terms of rise time or undershoot� The excessive actuator
e�ort would become apparent during design veri�cation� however� The solution� of
course� is to add an appropriate speci�cation that limits actuator e�ort�

An achievable design might also be unsatisfactory because the LTI plant P is
not a su�ciently good model of the system to be controlled� Constraining various
signals to be smaller may improve the accuracy with which the system can be
modeled by an LTI P � adding appropriate robustness speci�cations �chapter ���
may also help�

16.3 Some History of the Main Ideas

16.3.1 Truxal’s Closed-Loop Design Method

The idea of �rst designing the closed	loop system and then determining the con	
troller required to achieve this closed	loop system is at least forty years old� An
explicit presentation of a such a method appears in Truxal�s ���� Ph�D� the	
sis !Tru��"� and chapter � of Truxal�s ���� book� Automatic Feedback Control

System Synthesis� in which we �nd !Tru��� p���"�

Guillemin in ���
 proposed that the synthesis of feedback control sys	
tems take the form � � �

�� The closed	loop transfer function is determined from the speci�ca	
tions�


� The corresponding open	loop transfer function is found�

�� The appropriate compensation networks are synthesized�
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Truxal cites his Ph�D� thesis and a ���� article by Aaron !Aar��"�
On the di�erence between classical controller synthesis and the method he pro	

poses� he states �!Tru��� p�������"��

The word synthesis rigorously implies a logical procedure for the transi	
tion from speci�cations to system� In pure synthesis� the designer is able
to take the speci�cations and in a straightforward path proceed to the
�nal system� In this sense� neither the conventional methods of servo
design nor the root locus method is pure synthesis� for in each case the
designer attempts to modify and to build up the open	loop system until
he has reached a point where the system� after the loop is closed� will
be satisfactory�

� � � !The closed	loop design" approach to the synthesis of closed	loop sys	
tems represents a complete change in basic thinking� No longer is the
designer working inside the loop and trying to splice things up so that
the overall system will do the job required� On the contrary� he is now
saying� �I have a certain job that has to be done� I will force the system
to do it��

So Truxal views his closed	loop controller design method as a �more logical synthesis
pattern� �p

�� than classical methods� He does not extensively justify this view�
except to point out the simple relation between the classical error constants and the
closed	loop transfer function �p
���� �In chapter � we saw that the classical error
constants are a�ne functionals of the closed	loop transfer matrix��

The closed	loop design method is described in the books !NGK��"� !RF���
ch�"� !Hor	
� x����"� and !FPW��� x���" �see also the Notes and References from
chapter 
 on the interpolation conditions��

16.3.2 Fegley’s Linear and Quadratic Programming Approach

The observation that some controller design problems can be solved by numerical
optimization that involves closed	loop transfer functions is made in a series of papers
starting in ���� by Fegley and colleagues� In !Feg	�" and !FH	�"� Fegley applies
linear programming to the closed	loop controller design approach� incorporating
such speci�cations as asymptotic tracking of a speci�c command signal and an
overshoot limit� This method is extended to use quadratic programming in !PF		�
BF	�"� In !CF	�" and !MF��"� speci�cations on RMS values of signals are included�
A summary of most of the results of Fegley and his colleagues appears in !FBB��"�
which includes examples such as a minimum variance design with a step response
envelope constraint� This paper has the summary�

Linear and quadratic programming are applicable � � � to the design of
control systems� The use of linear and quadratic programming fre	
quently represents the easiest approach to an optimal solution and often
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makes it possible to impose constraints that could not be imposed in
other methods of solution�

So� several important ideas in this book appear in this series of papers by Fegley
and colleagues� designing the closed�loop system directly� noting the restrictions
placed by the plant on the achievable closed�loop system� expressing performance
speci�cations as closed�loop convex constraints� and using numerical optimization
to solve problems that do not have an analytical solution �see the quote above��

Several other important ideas� however� do not appear in this series of papers�
Convexity is never mentioned as the property of the problems that makes e�ective
solution possible� linear and quadratic programming are treated as useful 	tools

which they 	apply
 to the controller design problem� The casual reader might
conclude that an extension of the method to inde�nite �nonconvex� quadratic pro�
gramming is straightforward� and might allow the designer to incorporate some
other useful speci�cations� This is not the case� numerically solving nonconvex
QP�s is vastly more di�cult than solving convex QP�s �see section 
����
��

Another important idea that does not appear in the early literature on the
closed�loop design method is that it can potentially search over all possible LTI
controllers� whereas a classical design method �or indeed� a modern state�space
method� searches over a restricted �but often adequate� set of LTI controllers� Fi�
nally� this early form of the closed�loop design method is restricted to the design
of one closed�loop transfer function� for example� from command input to system
output�

16.3.3 Q-Parameter Design

The closed�loop design method was �rst extended to MAMS control systems �i�e�� by
considering closed�loop transfer matrices instead of a particular transfer function��
in a series of papers by Desoer and Chen �DC��a� DC��b� CD��b� CD��� and
Gustafson and Desoer �GD��� DG��b� DG��a� GD���� These papers emphasize
the design of controllers� and not the determination that a set of design speci�cations
cannot be achieved by any controller�

In his 
��� Ph� D� thesis� Salcudean �Sal��� uses the parametrization of achiev�
able closed�loop transfer matrices described in chapter � to formulate the controller
design problem as a constrained convex optimization problem� He describes many of
the closed�loop convex speci�cations we encountered in chapters ��
�� and discusses
the importance of convexity� See also the article by Polak and Salcudean �PS����

The authors of this book and colleagues have developed a program called qdes�
which is described in the article �BBB���� The program accepts input written
in a control speci�cation language that allows the user to describe a discrete�time
controller design problem in terms of many of the closed�loop convex speci�cations
presented in this book� A simple method is used to approximate the controller
design problem as a �nite�dimensional linear or quadratic programming problem�
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which is then solved� The simple organization and approximations made in qdes
make it practical only for small problems� The paper by Oakley and Barratt �OB�	�
describes the use of qdes to design a controller for a �exible mechanical structure�

16.3.4 FIR Filter Design via Convex Optimization

A relevant parallel development took place in the area of digital signal processing�
In about 
���� several researchers observed that many �nite impulse response �FIR�
�lter design problems could be cast as linear programs� see� for example� the arti�
cles �CRR��� Rab
�� or the books by Oppenheim and Schaefer �OS
	� x���� and
Rabiner and Gold �RG
�� ch���� In �RG
�� x����� we even �nd designs subject to
both time and frequency domain speci�cations�

Quite often one would like to impose simultaneous restrictions on both
the time and frequency response of the �lter� For example� in the design
of lowpass �lters� one would often like to limit the step response over�
shoot or ripple� at the same time maintaining some reasonable control
over the frequency response of the �lter� Since the step response is a
linear function of the impulse response coe�cients� a linear program is
capable of setting up constraints of the type discussed above�

A recent article on this topic is �OKU����
Like the early work on the closed�loop design method� convexity is not recognized

as the property of the FIR �lter design problem that allows e�cient solution� Nor is
it noted that the method actually computes the global optimum� i�e�� if the method
fails to design an FIR �lter that meets some set of convex speci�cations� then the
speci�cations cannot be achieved by any FIR �lter �of that order��

16.4 Some Extensions

16.4.1 Discrete-Time Plants

Essentially all of the material in this book applies to single�rate discrete�time plants
and controllers� provided the obvious changes are made �e�g�� rede�ning stability to
mean no poles on or outside the unit disk�� For a discrete�time development� there
is a natural choice of stable transfer matrices that can be used to form the �analog
of the� Ritz sequence �
���� described in section 
��
�

Qijk�z� � Eijz
��k���� 
 � i � nu� 
 � j � ny� k � 
� �� � � � �

�Eij is the matrix with a unit i� j entry� and all other entries zero�� which corresponds
to a delay of k�
 time steps� from the jth input of Q to its ith output� Thus in the
Ritz approximation� the entries of the transfer matrix Q are polynomials in z���
i�e�� FIR �lters� This approach is taken in the program qdes �BBB����
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Many of the results can be extended to multi�rate plant and controllers� i�e��
a plant in which di�erent sensor signals are sampled at di�erent rates� or di�er�
ent actuator signals are updated at di�erent rates� A parametrization of stabi�
lizing multi�rate controllers has recently been developed by Meyer �Mey�	�� this
parametrization uses a transfer matrix Q�z� that ranges over all stable transfer
matrices that satisfy some additional convex constraints�

16.4.2 Nonlinear Plants

There are several heuristic methods for designing a nonlinear controller for a non�
linear plant� based on the design of an LTI controller for an LTI plant �or a family
of LTI controllers for a family of LTI plants�� see the Notes and References for chap�
ter �� In the Notes and References for chapter 
�� we saw a method of designing a
nonlinear controller for a plant that has saturating actuators� These methods often
work well in practice� but do not qualify as extensions of the methods and ideas
described in this book� since they do not consider all possible closed�loop systems
that can be achieved� In a few cases� however� stronger results have been obtained�

In �DL���� Desoer and Liu have shown that for stable nonlinear plants� there is
a parametrization of stabilizing controllers that is similar to the one described in
section ������ provided a technical condition on P holds �incremental stability��

For unstable nonlinear plants� however� only partial results have been obtained�
In �DL��� and �AD���� it is shown how a family of stabilizing controllers can be
obtained by �rst �nding one stabilizing controller� and then applying the results
of Desoer and Liu mentioned above� But even in the case of an LTI plant and
controller� this 	two�step compensation
 approach can fail to yield all controllers
that stabilize the plant� This approach is discussed further in the articles �DL��a�
DL��b� DL����

In a series of papers� Hammer has investigated an extension of the stable factor�
ization theory �see the Notes and References for chapter �� to nonlinear systems�
see �Ham��� and the references therein� Stable factorizations of nonlinear systems
are also discussed in Verma �Ver����
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Notation and Symbols

Basic Notation

Notation Meaning

f � � � g Delimiters for sets� and for statement grouping in
algorithms in chapter 
��

� � � � � Delimiters for expressions�

f � X � Y A function from the set X into the set Y �

� The empty set�

� Conjunction of predicates� 	and
�

k � k A norm� see page ��� A particular norm is indicated
with a mnemonic subscript�

���x� The subdi�erential of the functional � at the point x�
see page ����

�
� Equals by de�nition�

� Equals to �rst order�

� Approximately equal to �used in vague discussions��

�

� The inequality holds to �rst order�

�X A �rst order change in X�

argmin A minimizer of the argument� See page ���

C The complex numbers�

C
n The vector space of n�component complex vectors�

C
m�n The vector space of m� n complex matrices�

EX The expected value of the random variable X�

	�z� The imaginary part of a complex number z�

383
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inf The in�mum of a function or set� The reader
unfamiliar with the notation inf can substitute min
without ill e�ect�

j A square root of �
�
lim sup The asymptotic supremum of a function� see page ���

Prob�Z� The probability of the event Z�


�z� The real part of a complex number z�

R The real numbers�

R� The nonnegative real numbers�

R
n The vector space of n�component real vectors�

R
m�n The vector space of m� n real matrices�

�i�M� The ith singular value of a matrix M � the square root
of the ith largest eigenvalue of M�M �

�max�M� The maximum singular value of a matrix M � the
square root of the largest eigenvalue of M�M �

sup The supremum of a function or set� The reader
unfamiliar with the notation sup can substitute max
without ill e�ect�

TrM The trace of a matrix M � the sum of its entries on the
diagonal�

M � � The n� n complex matrix M is positive semide�nite�
i�e�� z�Mz � � for all z � Cn�

M � � The n� n complex matrix M is positive de�nite� i�e��
z�Mz � � for all nonzero z � Cn�

� � � The n�component real�valued vector � has
nonnegative entries� i�e�� � � Rn

��

MT The transpose of a matrix or transfer matrix M �

M� The complex conjugate transpose of a matrix or
transfer matrix M �

M��� A symmetric square root of a matrix M �M� � ��
i�e�� M���M��� �M �
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Global Symbols

Symbol Meaning Page

� A function from the space of transfer matrices to real
numbers� i�e�� a functional on H� A particular
function is indicated with a mnemonic subscript�

��

� The restriction of a functional � to a
�nite�dimensional domain� i�e�� a function from R

n to
R� A particular function is indicated with a
mnemonic subscript�

���

D A design speci�cation� a predicate or boolean function
on H� A particular design speci�cation is indicated
with a mnemonic subscript�

��

H The closed�loop transfer matrix from w to z� ��

Hab The closed�loop transfer matrix from the signal b to
the signal a�

��

H The set of all nz � nw transfer matrices� A particular
subset of H �i�e�� a design speci�cation� is indicated
with a mnemonic subscript�

��

K The transfer matrix of the controller� ��

L The classical loop gain� L � P�K� ��

nw The number of exogenous inputs� i�e�� the size of w� ��

nu The number of actuator inputs� i�e�� the size of u� ��

nz The number of regulated variables� i�e�� the size of z� ��

ny The number of sensed outputs� i�e�� the size of y� ��

P The transfer matrix of the plant� �


P� The transfer matrix of a classical plant� which is
usually one part of the plant model P �

��

S The classical sensitivity transfer function or matrix� ��� �


T The classical I�O transfer function or matrix� ��� �


w Exogenous input signal vector� ��

u Actuator input signal vector� ��

z Regulated output signal vector� ��

y Sensed output signal vector� ��
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Other Symbols

Symbol Meaning Page

� A feedback perturbation� ��


� A set of feedback perturbations� ��


kxk The Euclidean norm of a vector x � Rn or x � Cn�
i�e��

p
x�x�

��

kuk� The L� norm of the signal u� �


kuk� The L� norm of the signal u� ��

kuk� The peak magnitude norm of the signal u� ��

kukaa The average�absolute value norm of the signal u� ��

kukrms The RMS norm of the signal u� ��

kukss� The steady�state peak magnitude norm of the signal u� ��

kHk� The H� norm of the transfer function H� ��� 

�

kHk� The H� norm of the transfer function H� 

�� 

�

kHk��a The a�shifted H� norm of the transfer function H� 
��

kHkhankel The Hankel norm of the transfer function H� 
��

kHkpk step The peak of the step response of the transfer function
H�

��

kHkpk gn The peak gain of the transfer function H� ��� 




kHkrms�w The RMS response of the transfer function H when
driven by the stochastic signal w�

��

kHkrms gn The RMS gain of the transfer function H� equal to its
H� norm�

��� 

�

kHkwc A worst case norm of the transfer function H� ��

A The region of achievable speci�cations in performance
space�


��

AP � Bw� Bu�

Cz� Cy�Dzw�

Dzu�Dyw�Dyu

The matrices in a state�space representation of the
plant�

��

CF�u� The crest factor of a signal u� �


Dz��� The dead�zone function� ���

I��H� The 	�entropy of the transfer function H� 

�

nproc A process noise� often actuator�referred� ��

nsensor A sensor noise� ��
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Fu�a� The amplitude distribution function of the signal u� ��

h�t� The impulse response of the transfer function H at
time t�

��

H�a�� H�b��

H�c�� H�d�

The closed�loop transfer matrices from w to z achieved
by the four controllers K�a�� K�b�� K�c�� K�d� in our
standard example system�

��

K�a�� K�b��

K�c�� K�d�

The four controllers in our standard example system� ��

P A perturbed plant set� �



P std
� The transfer function of our standard example

classical plant�
�


p� q Auxiliary inputs and outputs used in the perturbation
feedback form�

��


s Used for both complex frequency� s � � � j
� and the
step response of a transfer function or matrix
�although not usually in the same equation��

Sat��� The saturation function� ���

sgn��� The sign function� ��

T�� T�� T� Stable transfer matrices used in the free parameter
representation of achievable closed�loop transfer
matrices�


��

� A submatrix or entry of H not relevant to the current
discussion�


��

�� The minimum value of the function �� �



x� A minimizing argument of the function �� i�e��
�� � ��x���

�



Tv�f� The total variation of the function f � ��
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List of Acronyms

Acronym Meaning Page


�DOF One Degree�Of�Freedom ��

��DOF Two Degree�Of�Freedom ��

ARE Algebraic Riccati Equation 
��

FIR Finite Impulse Response ���

I�O Input�Output ��

LQG Linear Quadratic Gaussian ���

LQR Linear Quadratic Regulator ���

LTI Linear Time�Invariant ��

MAMS Multiple�Actuator� Multiple�Sensor ��

MIMO Multiple�Input� Multiple�Output 

�

PID Proportional plus Integral plus Derivative �

QP Quadratic Program ���

RMS Root�Mean�Square ��

SASS Single�Actuator� Single�Sensor ��

SISO Single�Input� Single�Output ��
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